Liu, H.; Yin, Z.; Liu, L.; Jiang, L.; Gu, G.; Wu, X.; Ren, W.
                            (Ed.)
                        
                    
            
                            Variable stiffness grippers can adapt to objects with different shapes and gripping forces. This paper presents a novel variable stiffness gripper (VSG) based on the Fin Ray effect that can adjust stiffness discretely. The main structure of the gripper includes the compliant frame, rotatable ribs, and the position limit components attached to the compliant frame. The stiffness of the gripper can be adjusted by rotating the specific ribs in the frame. There are four configurations for the gripper that were developed in this research: a) all ribs OFF (Flex) mode; b) upper ribs ON and lower ribs OFF (Hold) mode; c) upper ribs OFF and lower ribs ON (Pinch) mode; d) all ribs ON (Clamp) mode. Different configurations can provide various stiffness for the gripper’s finger to adapt the objects with different shapes and weights. To optimize the design, the stiffness analysis under various configurations and force conditions was implemented by finite element analysis (FEA). The 3-D printed prototypes were constructed to verify the feature and performance of the design concept of the VSG compared with the FEA results. The design of the VSG provides a novel idea for industrial robots and collaborative robots on adaptive grasping. 
                        more » 
                        « less   
                     An official website of the United States government
An official website of the United States government 
				
			 
					 
					
