skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Soil cover heterogeneity associated with biocrusts predicts patch-level plant diversity patterns
Abstract ContextSoil resource heterogeneity drives plant species diversity patterns at local and landscape scales. In drylands, biocrusts are patchily distributed and contribute to soil resource heterogeneity important for plant establishment and growth. Yet, we have a limited understanding of how such heterogeneity may relate to patterns of plant diversity and community structure. ObjectivesWe explored relationships between biocrust-associated soil cover heterogeneity and plant diversity patterns in a cool desert ecosystem. We asked: (1) does biocrust-associated soil cover heterogeneity predict plant diversity and community composition? and (2) can we use high-resolution remote sensing data to calculate soil cover heterogeneity metrics that could be used to extrapolate these patterns across landscapes? MethodsWe tested associations among field-based measures of plant diversity and soil cover heterogeneity. We then used a Support Vector Machine classification to map soil, plant and biocrust cover from sub-centimeter resolution Unoccupied Aerial System (UAS) imagery and compared the mapped results to field-based measures. ResultsField-based soil cover heterogeneity and biocrust cover were positively associated with plant diversity and predicted community composition. The accuracy of UAS-mapped soil cover classes varied across sites due to variation in timing and quality of image collections, but the overall results suggest that UAS are a promising data source for generating detailed, spatially explicit soil cover heterogeneity metrics. ConclusionsResults improve understanding of relationships between biocrust-associated soil cover heterogeneity and plant diversity and highlight the promise of high-resolution UAS data to extrapolate these patterns over larger landscapes which could improve conservation planning and predictions of dryland responses to soil degradation under global change.  more » « less
Award ID(s):
2320296
PAR ID:
10635468
Author(s) / Creator(s):
;
Publisher / Repository:
Springer Nature
Date Published:
Journal Name:
Landscape Ecology
Volume:
39
Issue:
11
ISSN:
1572-9761
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Jianguo, Wu (Ed.)
    Abstract ContextDynamic feedbacks between physical structure and ecological function drive ecosystem productivity, resilience, and biodiversity maintenance. Detailed maps of canopy structure enable comprehensive evaluations of structure–function relationships. However, these relationships are scale-dependent, and identifying relevant spatial scales to link structure to function remains challenging. ObjectivesWe identified optimal scales to relate structure heterogeneity to ecological resistance, measured as the impacts of wildfire on canopy structure, and ecological resilience, measured as native shrub recruitment. We further investigated whether structural heterogeneity can aid spatial predictions of shrub recruitment. MethodsUsing high-resolution imagery from unoccupied aerial systems (UAS), we mapped structural heterogeneity across ten semi-arid landscapes, undergoing a disturbance-mediated regime shift from native shrubland to dominance by invasive annual grasses. We then applied wavelet analysis to decompose structural heterogeneity into discrete scales and related these scales to ecological metrics of resilience and resistance. ResultsWe found strong indicators of scale dependence in the tested relationships. Wildfire effects were most prominent at a single scale of structural heterogeneity (2.34 m), while the abundance of shrub recruits was sensitive to structural heterogeneity at a range of scales, from 0.07 – 2.34 m. Structural heterogeneity enabled out-of-site predictions of shrub recruitment (R2 = 0.55). The best-performing predictive model included structural heterogeneity metrics across multiple scales. ConclusionsOur results demonstrate that identifying structure–function relationships requires analyses that explicitly account for spatial scale. As high-resolution imagery enables spatially extensive maps of canopy heterogeneity, models for scale dependence will aid our understanding of resilience mechanisms in imperiled arid ecosystems. 
    more » « less
  2. Abstract PremiseEndophytic plant‐microbe interactions range from mutualistic relationships that confer important ecological and agricultural traits to neutral or quasi‐parasitic relationships. In contrast to root‐associated endophytes, the role of environmental and host‐related factors in the acquisition of leaf endophyte communities at broad spatial and phylogenetic scales remains sparsely studied. We assessed endofoliar diversity to test the hypothesis that membership in these microbial communities is driven primarily by abiotic environment and host phylogeny. MethodsWe used a broad geographic coverage of North America in the genusHeucheraL. (Saxifragaceae), representing 32 species and varieties across 161 populations. Bacterial and fungal communities were characterized using 16S and ITS amplicon sequencing, respectively, and standard diversity metrics were calculated. We assembled environmental predictors for microbial diversity at collection sites, including latitude, elevation, temperature, precipitation, and soil parameters. ResultsAssembly patterns differed between bacterial and fungal endophytes. Host phylogeny was significantly associated with bacteria, while geographic distance was the best predictor of fungal community composition. Species richness and phylogenetic diversity were consistent across sites and species, with only fungi showing a response to aridity and precipitation for some metrics. Unlike what has been observed with root‐associated microbial communities, in this system microbes show no relationship with pH or other soil factors. ConclusionsOverall, this work improves our understanding of the large‐scale patterns of diversity and community composition in leaf endophytes and highlights the relative significance of environmental and host‐related factors in driving different microbial communities within the leaf microbiome. 
    more » « less
  3. Abstract The stability of forest productivity is a widely studied phenomenon often associated with tree species diversity. Yet, drivers of stability in forest structure and its consequences for forest productivity remain poorly understood. Using a large (10 ha) young tree diversity experiment, we evaluated how forest structure and multiple dimensions of diversity and composition are related to remotely sensed structural metrics and their stability through the growing season. We then examined whether structural stability (SS) across the growing season (April–October) could explain overyielding (i.e., the net biodiversity effect, NBE) in annual wood productivity. Using Uncrewed Aerial Vehicle‐Light Detecting and Ranging (UAV‐LiDAR), we surveyed experimental tree communities eight times at regular intervals from before bud break to after leaf senescence to derive metrics associated with canopy height heterogeneity, fractional plant cover, and forest structural complexity (based on fractal geometry). The inverse coefficients of variation for each of these three metrics through the season were used as measures of SS. These metrics were then coupled with annual tree inventories to evaluate their relationships with the NBE. Our findings indicate that wood volume and, to some extent, multiple dimensions of diversity and composition (i.e., taxonomic, phylogenetic, and functional) explain remotely sensed metrics of forest structure and their SS. Increases in wood volume as well as functional and phylogenetic diversity and variability (a measure of diversity independent of species richness) were linked to higher SS of forest complexity and canopy height heterogeneity. We further found that higher SS of forest complexity and fractional plant cover were associated with increased overyielding, which was mostly attributable to the complementarity effect. Structural equation models indicate that the stability of structural complexity explains more variation in NBE among plots than dimensions of diversity or variability, highlighting its value as an informative metric that likely integrates multiple drivers associated with overyielding. This study highlights the potential to integrate remote sensing and ecology to disentangle the role of forest SS in shaping ecological processes. 
    more » « less
  4. Abstract The spatial heterogeneity of soil’s microhabitats warrants the study of ecological patterns and community assembly processes in the context of physical disturbance that disrupts the inherent spatial isolation of soil microhabitats and microbial communities. By mixing soil at various frequencies in a 16-week lab incubation, we explored the effects of physical disturbance on soil bacterial richness, community composition, and community assembly processes. We hypothesized that well-mixed soil would harbor a less rich microbial community, with community assembly marked by homogenizing dispersal and homogeneous selection. Using 16S rRNA gene sequencing, we inferred community assembly processes, estimated richness and differential abundance, and calculated compositional dissimilarity. Findings supported our hypotheses, with > 20% decrease in soil bacterial richness in well-mixed soil. Soil mixing caused communities to diverge from unmixed controls (Bray–Curtis dissimilarity; 0.75 vs. 0.25), while reducing within-group heterogeneity. Our results imply that the vast diversity observed in soil may be supported by spatial heterogeneity and isolation of microbial communities, and also provide insight into the effects of physical disturbance and community coalescence events. By isolating and better understanding the effects of spatial heterogeneity and disconnectivity on soil microbial communities, we can better extrapolate how anthropogenic disturbances may affect broad soil functions. 
    more » « less
  5. Abstract High alpine regions are threatened but understudied ecosystems that harbor diverse endemic species, making them an important biome for testing the role of environmental factors in driving functional trait‐mediated community assembly processes. We tested the hypothesis that plant community assembly along a climatic and elevation gradient is influenced by shifts in habitat suitability, which drive plant functional, phylogenetic, and spectral diversity. In a high mountain system (2400–3500 m) Región Metropolitana in the central Chilean Andes (33°S, 70°W). We surveyed vegetation and spectroscopic reflectance (400–2400 nm) to quantify taxonomic, phylogenetic, functional, and spectral diversity at five sites from 2400 to 3500 m elevation. We characterized soil attributes and processes by measuring water content, carbon and nitrogen, and net nitrogen mineralization rates. At high elevation, colder temperatures reduced available soil nitrogen, while at warmer, lower elevations, soil moisture was lower. Metrics of taxonomic, functional, and spectral alpha diversity peaked at mid‐elevations, while phylogenetic species richness was highest at low elevation. Leaf nitrogen increased with elevation at the community level and within individual species, consistent with global patterns of increasing leaf nitrogen with colder temperatures. The increase in leaf nitrogen, coupled with shifts in taxonomic and functional diversity associated with turnover in lineages, indicate that the ability to acquire and retain nitrogen in colder temperatures may be important in plant community assembly in this range. Such environmental filters have important implications for forecasting shifts in alpine plant communities under a warming climate. 
    more » « less