skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on August 1, 2026

Title: Fluid Simulation on Vortex Particle Flow Maps
We propose theVortexParticleFlowMap (VPFM) method to simulate incompressible flow with complex vortical evolution in the presence of dynamic solid boundaries. The core insight of our approach is that vorticity is an ideal quantity for evolution on particle flow maps, enabling significantly longer flow map distances compared to other fluid quantities like velocity or impulse. To achieve this goal, we developed a hybrid Eulerian-Lagrangian representation that evolves vorticity and flow map quantities on vortex particles, while reconstructing velocity on a background grid. The method integrates three key components: (1) a vorticity-based particle flow map framework, (2) an accurate Hessian evolution scheme on particles, and (3) a solid boundary treatment for no-through and no-slip conditions in VPFM. These components collectively allow a substantially longer flow map length (3–12times longer) than the state-of-the-art, enhancing vorticity preservation over extended spatiotemporal domains. We validated the performance of VPFM through diverse simulations, demonstrating its effectiveness in capturing complex vortex dynamics and turbulence phenomena.  more » « less
Award ID(s):
2433322 1919647
PAR ID:
10635819
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
ACM
Date Published:
Journal Name:
ACM Transactions on Graphics
Volume:
44
Issue:
4
ISSN:
0730-0301
Page Range / eLocation ID:
1 to 24
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We propose a novel Particle Flow Map (PFM) method to enable accurate long-range advection for incompressible fluid simulation. The foundation of our method is the observation that a particle trajectory generated in a forward simulation naturally embodies a perfect flow map. Centered on this concept, we have developed an Eulerian-Lagrangian framework comprising four essential components: Lagrangian particles for a natural and precise representation of bidirectional flow maps; a dual-scale map representation to accommodate the mapping of various flow quantities; a particle-to-grid interpolation scheme for accurate quantity transfer from particles to grid nodes; and a hybrid impulse-based solver to enforce incompressibility on the grid. The efficacy of PFM has been demonstrated through various simulation scenarios, highlighting the evolution of complex vortical structures and the details of turbulent flows. Notably, compared to NFM, PFM reduces computing time by up to 49 times and memory consumption by up to 41%, while enhancing vorticity preservation as evidenced in various tests like leapfrog, vortex tube, and turbulent flow. 
    more » « less
  2. We present an Eulerian vortex method based on the theory of flow maps to simulate the complex vortical motions of incompressible fluids. Central to our method is the novel incorporation of the flow-map transport equations forline elements, which, in combination with a bi-directional marching scheme for flow maps, enables the high-fidelity Eulerian advection of vorticity variables. The fundamental motivation is that, compared to impulsem, which has been recently bridged with flow maps to encouraging results, vorticityωpromises to be preferable for its numerical stability and physical interpretability. To realize the full potential of this novel formulation, we develop a new Poisson solving scheme for vorticity-to-velocity reconstruction that is both efficient and able to accurately handle the coupling near solid boundaries. We demonstrate the efficacy of our approach with a range of vortex simulation examples, including leapfrog vortices, vortex collisions, cavity flow, and the formation of complex vortical structures due to solid-fluid interactions. 
    more » « less
  3. We propose a novel solid-fluid interaction method for coupling elastic solids with impulse flow maps. Our key idea is to unify the representation of fluid and solid components as particle flow maps with different lengths and dynamics. The solid-fluid coupling is enabled by implementing two novel mechanisms: first, we developed an impulse-to-velocity transfer mechanism to unify the exchanged physical quantities; second, we devised a particle path integral mechanism to accumulate coupling forces along each flow-map trajectory. Our framework integrates these two mechanisms into an Eulerian-Lagrangian impulse fluid simulator to accommodate traditional coupling models, exemplified by the Material Point Method (MPM) and Immersed Boundary Method (IBM), within a particle flow map framework. We demonstrate our method's efficacy by simulating solid-fluid interactions exhibiting strong vortical dynamics, including various vortex shedding and interaction examples across swimming, falling, breezing, and combustion. 
    more » « less
  4. This paper introduces a two-phase interfacial fluid model based on the impulse variable to capture complex vorticity-interface interactions. Our key idea is to leverage bidirectional flow map theory to enhance the transport accuracy of both vorticity and interfaces simultaneously and address their coupling within a unified Eulerian framework. At the heart of our framework is an impulse ghost fluid method to solve the two-phase incompressible fluid characterized by its interfacial dynamics. To deal with the history-dependent jump of gauge variables across a dynamic interface, we develop a novel path integral formula empowered by spatiotemporal buffers to convert the history-dependent jump condition into a geometry-dependent jump condition when projecting impulse to velocity. We demonstrate the efficacy of our approach in simulating and visualizing several interface-vorticity interaction problems with cross-phase vortical evolution, including interfacial whirlpool, vortex ring reflection, and leapfrogging bubble rings. 
    more » « less
  5. We propose a novel gauge fluid solver that evolves Clebsch wave functions on particle flow maps (PFMs). The key insight underlying our work is that particle flow maps exhibit superior performance in transporting point elements—such as Clebsch components—compared to line and surface elements, which were the focus of previous methods relying on impulse and vortex gauge variables for flow maps. Our Clebsch PFM method incorporates three main contributions: a novel gauge transformation enabling accurate transport of wave functions on particle flow maps, an enhanced velocity reconstruction method for coarse grids, and a PFM-based simulation framework designed to better preserve fine-scale flow structures. We validate the Clebsch PFM method through a wide range of benchmark tests and simulation examples, ranging from leapfrogging vortex rings and vortex reconnections to Kelvin-Helmholtz instabilities, demonstrating that our method outperforms its impulse- or vortex-based counterparts on particle flow maps, particularly in preserving and evolving small-scale features. 
    more » « less