Ocean deoxygenation due to anthropogenic warming represents a major threat to marine ecosystems and fisheries. Challenges remain in simulating the modern observed changes in the dissolved oxygen (O2). Here, we present an analysis of upper ocean (0-700m) deoxygenation in recent decades from a suite of the Coupled Model Intercomparison Project phase 6 (CMIP6) ocean biogeochemical simulations. The physics and biogeochemical simulations include both ocean-only (the Ocean Model Intercomparison Project Phase 1 and 2, OMIP1 and OMIP2) and coupled Earth system (CMIP6 Historical) configurations. We examine simulated changes in the O2inventory and ocean heat content (OHC) over the past 5 decades across models. The models simulate spatially divergent evolution of O2trends over the past 5 decades. The trend (multi-model mean and spread) for upper ocean global O2inventory for each of the MIP simulations over the past 5 decades is 0.03 ± 0.39×1014 [mol/decade] for OMIP1, −0.37 ± 0.15×1014[mol/decade] for OMIP2, and −1.06 ± 0.68×1014[mol/decade] for CMIP6 Historical, respectively. The trend in the upper ocean global O2inventory for the latest observations based on the World Ocean Database 2018 is −0.98×1014[mol/decade], in line with the CMIP6 Historical multi-model mean, though this recent observations-based trend estimate is weaker than previously reported trends. A comparison across ocean-only simulations from OMIP1 and OMIP2 suggests that differences in atmospheric forcing such as surface wind explain the simulated divergence across configurations in O2inventory changes. Additionally, a comparison of coupled model simulations from the CMIP6 Historical configuration indicates that differences in background mean states due to differences in spin-up duration and equilibrium states result in substantial differences in the climate change response of O2. Finally, we discuss gaps and uncertainties in both ocean biogeochemical simulations and observations and explore possible future coordinated ocean biogeochemistry simulations to fill in gaps and unravel the mechanisms controlling the O2changes.
more »
« less
Connecting Warming Patterns of the Paleo‐Ocean to Our Future
Abstract The evolution of the spatial pattern of ocean surface warming affects global radiative feedback, yet different climate models provide varying estimates of future patterns. Paleoclimate data, especially from past warm periods, can help constrain future equilibrium warming patterns. By analyzing marine temperature records spanning the past 10 million years with a regression‐based technique that removes temporal dimensions, we extract long‐term ocean warming patterns and quantify relative sea surface temperature changes across the global ocean. This analysis revealed a distinct pattern of amplified warming that aligns with equilibrated model simulations under high CO2conditions, yet differs from the transient warming pattern observed over the past 160 years. This paleodata‐model comparison allows us to identify models that better capture fundamental aspects of Earth's warming response, while suggesting how ocean heat uptake and circulation changes modify the development of warming patterns over time. By combining this paleo‐ocean warming pattern with equilibrated model simulations, we characterized the likely evolution of global ocean warming as the climate system approaches equilibrium.
more »
« less
- PAR ID:
- 10636061
- Publisher / Repository:
- AGU
- Date Published:
- Journal Name:
- AGU Advances
- Volume:
- 6
- Issue:
- 5
- ISSN:
- 2576-604X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract While high latitude amplification is seen in modern observations, paleoclimate records, and climate modeling, better constraints on the magnitude and pattern of amplification would provide insights into the mechanisms that drive it, which remain actively debated. Here we present multi-proxy multi-site paleotemperature records over the last 10 million years from the Western Pacific Warm Pool (WPWP) – the warmest endmember of the global ocean that is uniquely important in the global radiative feedback change. These sea surface temperature records, based on lipid biomarkers and seawater Mg/Ca-adjusted foraminiferal Mg/Ca, unequivocally show warmer WPWP in the past, and a secular cooling over the last 10 million years. Compiling these data with existing records reveals a persistent, nearly stationary, extratropical response pattern in the Pacific in which high latitude (~50°N) temperatures increase by ~2.4° for each degree of WPWP warming. This relative warming pattern is also evident in model outputs of millennium-long climate simulations with quadrupling atmospheric CO 2 , therefore providing a strong constraint on the future equilibrium response of the Earth System.more » « less
-
Abstract Reliable estimates of climate sensitivity require understanding how patterns of surface temperature change influence the global radiative feedback. Here we present a theoretical basis for this pattern effect as it relates to the longwave clear sky feedback. A moist adiabatic feedback framework is developed that partitions the feedback into components associated with locally determined moist adiabatic processes and components associated with deviations therefrom, such as due to nonlocal influences and relative humidity changes. Applying this feedback framework to simulations forced by transient and equilibrium patterns of sea surface temperature change reveals that the pattern effect is driven by different physical processes in different geographic regions. In the subtropics, the more stabilizing feedback under transient climate change is explained by a more negative relative humidity feedback. Over the Southern Ocean, the less stabilizing feedback under transient climate change occurs due to the muted surface warming there, which promotes a weak surface temperature feedback; furthermore, for an idealized pattern of change in which the transient sea surface temperature change is uniformly increased but retains the same structure, the pattern effect essentially disappears. The moist adiabatic feedback framework demonstrates that the evolving zonal-mean longwave clear sky feedback—towards stabilization at high latitudes and destabilization at low latitudes, as the climate approaches equilibrium—is controlled by processes, specifically surface temperature and relative humidity feedbacks, not isolated by conventional feedback analysis. In the global mean, the destabilization effect proves larger, receiving additional contributions from small but geographically extensive differences in the fixed-relative humidity atmospheric temperature feedback.more » « less
-
Abstract During the Middle Miocene Climate Transition (MMCT; ∼14.7–13.8 Ma), the global climate experienced rapid cooling, leading to modern‐like temperatures, precipitation patterns, and permanent ice sheets. However, proxy records indicate that atmospheric pCO2and regional climate conditions (SST, ice volume) were highly variable from 17 to 12.5 Ma and these changes were not always synchronous. Here, we report on a series of middle Miocene (∼16–12.5 Ma) simulations using the water isotope enabled earth system model (iCESM1.2) to explore the potential for multiple equilibrium states to explain the observed decoupling between pCO2and regional climates. Our simulations indicate that initial ocean conditions can significantly influence deep water formation in the North Atlantic and lead to multiple ocean equilibria. When the model is initiated from a cold state, residual cool surface water temperatures in the North Atlantic intensify Atlantic Meridional Ocean Circulation (AMOC) and inhibit Arctic sea‐ice formation. When initiated from a warm state, the AMOC remains weak. The different ocean states drive differences in equator‐to‐pole sea surface temperature gradients and sea ice distributions through heat redistribution changes. These equilibria cause variations in temperature gradients and sea ice distribution due to changes in heat redistribution. Additionally, changes in ocean circulation and a reduced temperature gradient in the North Atlantic increase North Atlantic precipitation when the AMOC is strong. These findings underscore the importance of the ocean's initial state in shaping regional climate responses to atmospheric pCO2, potentially explaining regional climate pattern variability observed during the Miocene.more » « less
-
Abstract We evaluate five commonly‐applied criteria to validate that a climate model is in so‐called “quasi‐equilibrium,” using a suite of five simulations with CO2concentrations between 1× and 16× Pre‐Industrial values. We find that major changes in ocean circulation can occur after common thermal equilibrium criteria are reached, such as a small Top of Atmosphere radiative flux imbalance, or weak trends in surface air temperature, sea surface temperature, and deep ocean temperature. Ocean circulation change, in turn, impact high‐latitude SAT, sea ice, and the Inter‐tropical Convergence Zone position. For future modeling studies and intercomparison projects aiming for an ocean in quasi‐equilibrium, we suggest that time series of key meridional overturning circulation (MOC) metrics in the Atlantic, Pacific, and Southern Ocean are saved, and that MOC trends are less than 1 Sv/1000 years, and DOT trends less than 0.1°C/century for the final 1000 years of the simulations.more » « less
An official website of the United States government

