Natural policy gradient (NPG) methods are among the most widely used policy optimization algorithms in contemporary reinforcement learning. This class of methods is often applied in conjunction with entropy regularization—an algorithmic scheme that encourages exploration—and is closely related to soft policy iteration and trust region policy optimization. Despite the empirical success, the theoretical underpinnings for NPG methods remain limited even for the tabular setting. This paper develops nonasymptotic convergence guarantees for entropy-regularized NPG methods under softmax parameterization, focusing on discounted Markov decision processes (MDPs). Assuming access to exact policy evaluation, we demonstrate that the algorithm converges linearly—even quadratically, once it enters a local region around the optimal policy—when computing optimal value functions of the regularized MDP. Moreover, the algorithm is provably stable vis-à-vis inexactness of policy evaluation. Our convergence results accommodate a wide range of learning rates and shed light upon the role of entropy regularization in enabling fast convergence.
more »
« less
Relaxed Equilibria for Time-Inconsistent Markov Decision Processes
This paper considers an infinite-horizon Markov decision process (MDP) that allows for general nonexponential discount functions in both discrete and continuous time. Because of the inherent time inconsistency, we look for a randomized equilibrium policy (i.e., relaxed equilibrium) in an intrapersonal game between an agent’s current and future selves. When we modify the MDP by entropy regularization, a relaxed equilibrium is shown to exist by a nontrivial entropy estimate. As the degree of regularization diminishes, the entropy-regularized MDPs approximate the original MDP, which gives the general existence of a relaxed equilibrium in the limit by weak convergence arguments. As opposed to prior studies that consider only deterministic policies, our existence of an equilibrium does not require any convexity (or concavity) of the controlled transition probabilities and reward function. Interestingly, this benefit of considering randomized policies is unique to the time-inconsistent case.
more »
« less
- Award ID(s):
- 2109002
- PAR ID:
- 10636081
- Publisher / Repository:
- Institute for Operations Research and the Management Sciences (INFORMS)
- Date Published:
- Journal Name:
- Mathematics of Operations Research
- ISSN:
- 0364-765X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)We consider an ultra-dense wireless network with N channels and M = N devices. Messages with fresh information are generated at each device according to a random process and need to be transmitted to an access point. The value of a message decreases as it ages, so each device searches for an idle channel to transmit the message as soon as it can. However, each channel probing is associated with a fixed cost (energy), so a device needs to adapt its probing rate based on the "age" of the message. At each device, the design of the optimal probing strategy can be formulated as an infinite horizon Markov Decision Process (MDP) where the devices compete with each other to find idle channels. While it is natural to view the system as a Bayesian game, it is often intractable to analyze such a system. Thus, we use the Mean Field Game (MFG) approach to analyze the system in a large-system regime, where the number of devices is very large, to understand the structure of the problem and to find efficient probing strategies. We present an analysis based on the MFG perspective. We begin by characterizing the space of valid policies and use this to show the existence of a Mean Field Nash Equilibrium (MFNE) in a constrained set for any general increasing cost functions with diminishing rewards. Further we provide an algorithm for computing the equilibrium for any given device, and the corresponding age-dependent channel probing policy.more » « less
-
We study optimal pricing in a single-server queueing system that can be observable or unobservable, depending on how customers receive information to estimate sojourn time. Our primary objective is to determine whether the service provider is better off making the system observable or unobservable under optimal pricing. We formulate the optimal pricing problem using Markov decision process (MDP) models for both observable and unobservable systems. For unobservable systems, the problem is studied using an MDP with a fixed-point equation as equilibrium constraints. We show that the MDPs for both observable and unobservable queues are special cases of a generalized arrivals-based MDP model, in which the optimal arrival rate (rather than price) is set in each state. Then, we show that the optimal policy that solves the generalized MDP exhibits a monotone structure in that the optimal arrival rate is non-increasing in the queue length, which allows for developing efficient algorithms to determine optimal pricing policies. Next, we show that if no customers overestimate sojourn time in the observable system, it is in the interest of the service provider to make the system observable. We also show that if all customers overestimate sojourn time, the service provider is better off making the system unobservable. Lastly, we learn from numerical results that when customers are heterogeneous in estimating their sojourn time, the service provider is expected to receive a higher gain by making the system observable if on average customers do not significantly overestimate sojourn time.more » « less
-
The effectiveness of Intelligent Tutoring Systems (ITSs) often depends upon their pedagogical strategies, the policies used to decide what action to take next in the face of alternatives. We induce policies based on two general Reinforcement Learning (RL) frameworks: POMDP &. MDP, given the limited feature space. We conduct an empirical study where the RL-induced policies are compared against a random yet reasonable policy. Results show that when the contents are controlled to be equal, the MDP-based policy can improve students’ learning significantly more than the random baseline while the POMDP-based policy cannot outperform the later. The possible reason is that the features selected for the MDP framework may not be the optimal feature space for POMDP.more » « less
-
The Gaussian-smoothed optimal transport (GOT) framework, recently proposed by Goldfeld et al., scales to high dimensions in estimation and provides an alternative to entropy regularization. This paper provides convergence guarantees for estimating the GOT distance under more general settings. For the Gaussian-smoothed $$p$$-Wasserstein distance in $$d$$ dimensions, our results require only the existence of a moment greater than $d + 2p$. For the special case of sub-gamma distributions, we quantify the dependence on the dimension $$d$$ and establish a phase transition with respect to the scale parameter. We also prove convergence for dependent samples, only requiring a condition on the pairwise dependence of the samples measured by the covariance of the feature map of a kernel space. A key step in our analysis is to show that the GOT distance is dominated by a family of kernel maximum mean discrepancy (MMD) distances with a kernel that depends on the cost function as well as the amount of Gaussian smoothing. This insight provides further interpretability for the GOT framework and also introduces a class of kernel MMD distances with desirable properties. The theoretical results are supported by numerical experiments.The Gaussian-smoothed optimal transport (GOT) framework, recently proposed by Goldfeld et al., scales to high dimensions in estimation and provides an alternative to entropy regularization. This paper provides convergence guarantees for estimating the GOT distance under more general settings. For the Gaussian-smoothed $$p$$-Wasserstein distance in $$d$$ dimensions, our results require only the existence of a moment greater than $d + 2p$. For the special case of sub-gamma distributions, we quantify the dependence on the dimension $$d$$ and establish a phase transition with respect to the scale parameter. We also prove convergence for dependent samples, only requiring a condition on the pairwise dependence of the samples measured by the covariance of the feature map of a kernel space. A key step in our analysis is to show that the GOT distance is dominated by a family of kernel maximum mean discrepancy (MMD) distances with a kernel that depends on the cost function as well as the amount of Gaussian smoothing. This insight provides further interpretability for the GOT framework and also introduces a class of kernel MMD distances with desirable properties. The theoretical results are supported by numerical experiments.more » « less
An official website of the United States government

