skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Relaxed Equilibria for Time-Inconsistent Markov Decision Processes
This paper considers an infinite-horizon Markov decision process (MDP) that allows for general nonexponential discount functions in both discrete and continuous time. Because of the inherent time inconsistency, we look for a randomized equilibrium policy (i.e., relaxed equilibrium) in an intrapersonal game between an agent’s current and future selves. When we modify the MDP by entropy regularization, a relaxed equilibrium is shown to exist by a nontrivial entropy estimate. As the degree of regularization diminishes, the entropy-regularized MDPs approximate the original MDP, which gives the general existence of a relaxed equilibrium in the limit by weak convergence arguments. As opposed to prior studies that consider only deterministic policies, our existence of an equilibrium does not require any convexity (or concavity) of the controlled transition probabilities and reward function. Interestingly, this benefit of considering randomized policies is unique to the time-inconsistent case.  more » « less
Award ID(s):
2109002
PAR ID:
10636081
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Institute for Operations Research and the Management Sciences (INFORMS)
Date Published:
Journal Name:
Mathematics of Operations Research
ISSN:
0364-765X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Natural policy gradient (NPG) methods are among the most widely used policy optimization algorithms in contemporary reinforcement learning. This class of methods is often applied in conjunction with entropy regularization—an algorithmic scheme that encourages exploration—and is closely related to soft policy iteration and trust region policy optimization. Despite the empirical success, the theoretical underpinnings for NPG methods remain limited even for the tabular setting. This paper develops nonasymptotic convergence guarantees for entropy-regularized NPG methods under softmax parameterization, focusing on discounted Markov decision processes (MDPs). Assuming access to exact policy evaluation, we demonstrate that the algorithm converges linearly—even quadratically, once it enters a local region around the optimal policy—when computing optimal value functions of the regularized MDP. Moreover, the algorithm is provably stable vis-à-vis inexactness of policy evaluation. Our convergence results accommodate a wide range of learning rates and shed light upon the role of entropy regularization in enabling fast convergence. 
    more » « less
  2. null (Ed.)
    We consider an ultra-dense wireless network with N channels and M = N devices. Messages with fresh information are generated at each device according to a random process and need to be transmitted to an access point. The value of a message decreases as it ages, so each device searches for an idle channel to transmit the message as soon as it can. However, each channel probing is associated with a fixed cost (energy), so a device needs to adapt its probing rate based on the "age" of the message. At each device, the design of the optimal probing strategy can be formulated as an infinite horizon Markov Decision Process (MDP) where the devices compete with each other to find idle channels. While it is natural to view the system as a Bayesian game, it is often intractable to analyze such a system. Thus, we use the Mean Field Game (MFG) approach to analyze the system in a large-system regime, where the number of devices is very large, to understand the structure of the problem and to find efficient probing strategies. We present an analysis based on the MFG perspective. We begin by characterizing the space of valid policies and use this to show the existence of a Mean Field Nash Equilibrium (MFNE) in a constrained set for any general increasing cost functions with diminishing rewards. Further we provide an algorithm for computing the equilibrium for any given device, and the corresponding age-dependent channel probing policy. 
    more » « less
  3. The effectiveness of Intelligent Tutoring Systems (ITSs) often depends upon their pedagogical strategies, the policies used to decide what action to take next in the face of alternatives. We induce policies based on two general Reinforcement Learning (RL) frameworks: POMDP &. MDP, given the limited feature space. We conduct an empirical study where the RL-induced policies are compared against a random yet reasonable policy. Results show that when the contents are controlled to be equal, the MDP-based policy can improve students’ learning significantly more than the random baseline while the POMDP-based policy cannot outperform the later. The possible reason is that the features selected for the MDP framework may not be the optimal feature space for POMDP. 
    more » « less
  4. The Gaussian-smoothed optimal transport (GOT) framework, recently proposed by Goldfeld et al., scales to high dimensions in estimation and provides an alternative to entropy regularization. This paper provides convergence guarantees for estimating the GOT distance under more general settings. For the Gaussian-smoothed $$p$$-Wasserstein distance in $$d$$ dimensions, our results require only the existence of a moment greater than $d + 2p$. For the special case of sub-gamma distributions, we quantify the dependence on the dimension $$d$$ and establish a phase transition with respect to the scale parameter. We also prove convergence for dependent samples, only requiring a condition on the pairwise dependence of the samples measured by the covariance of the feature map of a kernel space. A key step in our analysis is to show that the GOT distance is dominated by a family of kernel maximum mean discrepancy (MMD) distances with a kernel that depends on the cost function as well as the amount of Gaussian smoothing. This insight provides further interpretability for the GOT framework and also introduces a class of kernel MMD distances with desirable properties. The theoretical results are supported by numerical experiments.The Gaussian-smoothed optimal transport (GOT) framework, recently proposed by Goldfeld et al., scales to high dimensions in estimation and provides an alternative to entropy regularization. This paper provides convergence guarantees for estimating the GOT distance under more general settings. For the Gaussian-smoothed $$p$$-Wasserstein distance in $$d$$ dimensions, our results require only the existence of a moment greater than $d + 2p$. For the special case of sub-gamma distributions, we quantify the dependence on the dimension $$d$$ and establish a phase transition with respect to the scale parameter. We also prove convergence for dependent samples, only requiring a condition on the pairwise dependence of the samples measured by the covariance of the feature map of a kernel space. A key step in our analysis is to show that the GOT distance is dominated by a family of kernel maximum mean discrepancy (MMD) distances with a kernel that depends on the cost function as well as the amount of Gaussian smoothing. This insight provides further interpretability for the GOT framework and also introduces a class of kernel MMD distances with desirable properties. The theoretical results are supported by numerical experiments. 
    more » « less
  5. We pose and study the problem of planning in Markov decision processes (MDPs), subject to participation constraints as studied in mechanism design. In this problem, a planner must work with a self-interested agent on a given MDP. Each action in the MDP provides an immediate reward to the planner and a (possibly different) reward to the agent. The agent has no control in choosing the actions, but has the option to end the entire process at any time. The goal of the planner is to find a policy that maximizes her cumulative reward, taking into consideration the agent's ability to terminate. We give a fully polynomial-time approximation scheme for this problem. En route, we present polynomial-time algorithms for computing (exact) optimal policies for important special cases of this problem, including when the time horizon is constant, or when the MDP exhibits a "definitive decisions" property. We illustrate our algorithms with two different game-theoretic applications: the problem of assigning rides in ride-sharing and the problem of designing screening policies. Our results imply efficient algorithms for computing (approximately) optimal policies in both applications. 
    more » « less