skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on September 23, 2026

Title: Efficient Delay Fault Characterization of Resistive Open Defects in Standard Cells Using Resistive Fault Dominance
Stringent quality requirements for safety-critical applications drive the demand for “zero defects” in modern ICs. In this context, delay characterization of standard cells for resistive open defects is an increasing concern due to aggressive timing margins in digital circuits. The problem is made worse by the large number of open defect sites in standard cells, combined with a wide range of defect resistance values for each site. This incurs possible prohibitive costs for defect simulation and characterization. To alleviate this complexity, we propose Resistive Fault Dominance (RFD) for resistive open defects. RFD eliminates simulations of certain open defects with intermediate defect resistance values that are guaranteed to exceed specified timing margins for standard cells, based on tests for specific “dominant” open defects. This can significantly reduce the computational costs of cell library characterization and simulation effort by 84%-91%. An algorithmic fault simulation methodology for resistive open defects on parasitic-extracted (PEX) transistor level netlists is developed.  more » « less
Award ID(s):
2331002
PAR ID:
10636278
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
IEEE
Date Published:
Edition / Version:
1
Volume:
1
Issue:
1
ISBN:
979-8-3315-2014-4
Page Range / eLocation ID:
1-10
Subject(s) / Keyword(s):
Open defects Delay fault testing Defect characterization Critical faults Resistive fault dominance Elmore Delay.
Format(s):
Medium: X Size: 1MB Other: pdf
Size(s):
1MB
Location:
San Diego, CA
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract—Recent advances in process technology have resulted in novel defect mechanisms making the test generation process very challenging. In addition to complete opens and shorts that can be represented via extreme defect resistance magnitudes, partial resistive opens and shorts are also of concern in deeply scaled CMOS technologies. For open defects with intermediate defect magnitude values, it has been shown that multi-pattern tests are necessary for defect exposure. We extend this approach to short defects with intermediate defect magnitude values to obtain a suite of multi-pattern tests for standard cell instances that cover complete as well as partial intra-cell open and short defects. A hierarchical scan-compatible SAT-based test generation approach for full scan sequential circuits is then proposed that allows such multi-pattern tests to be applied to the circuit via the scan infrastructure. A key innovation is the combined use of shift and capture operations along with launch-on-capture and launch-on- shift scan based test application for increased defect coverage. Resulting defect coverage improvements over conventional two-pattern tests are demonstrated on ISCAS89 benchmark circuits. 
    more » « less
  2. Tolerating hardware faults in modern architectures is becoming a prominent problem due to the miniaturization of the hardware components, their increasing complexity, and the necessity to reduce costs. Software-Implemented Hardware Fault Tolerance approaches have been developed to improve system dependability regarding hardware faults without resorting to custom hardware solutions. However, these come at the expense of making the satisfaction of the timing constraints of the applications/activities harder from a scheduling standpoint. This article surveys the current state-of-the-art of fault tolerance approaches when used in the context of real-time systems, identifying the main challenges and the cross-links between these two topics. We propose a joint scheduling-failure analysis model that highlights the formal interactions among software fault tolerance mechanisms and timing properties. This model allows us to present and discuss many open research questions with the final aim to spur future research activities. 
    more » « less
  3. Abstract Defect engineering in valence change memories aimed at tuning the concentration and transport of oxygen vacancies are studied extensively, however mostly focusing on contribution from individual extended defects such as single dislocations and grain boundaries. In this work, the impact of engineering large numbers of grain boundaries on resistive switching mechanisms and performances is investigated. Three different grain morphologies, that is, “random network,” “columnar scaffold,” and “island‐like,” are realized in CeO2thin films. The devices with the three grain morphologies demonstrate vastly different resistive switching behaviors. The best overall resistive switching performance is shown in the devices with “columnar scaffold” morphology, where the vertical grain boundaries extending through the film facilitate the generation of oxygen vacancies as well as their migration under external bias. The observation of both interfacial and filamentary switching modes only in the devices with a “columnar scaffold” morphology further confirms the contribution from grain boundaries. In contrast, the “random network” or “island‐like” structures result in excessive or insufficient oxygen vacancy concentration migration paths. The research provides design guidelines for grain boundary engineering of oxide‐based resistive switching materials to tune the resistive switching performances for memory and neuromorphic computing applications. 
    more » « less
  4. Power system model parameter values are becoming increasingly uncertain and time-varying. Therefore, it is important to determine the margin in parameter space between a given set of parameter values for which the system will recover from a particular fault, and the nearest parameter values for which it will not recover from that fault. This work presents an efficient method for computing parameter space recovery margins by exploiting the property that the trajectory becomes infinitely sensitive to small changes in parameter value along the operating point’s region of attraction boundary. Consequently, along this boundary the inverse sensitivity of the trajectory approaches zero. The method proceeds by varying parameter values so as to minimize the inverse sensitivity of the system trajectory. Recent results provide theoretical justification for the approach. The efficacy of the method is demonstrated using a modified IEEE 39-bus New England power system test case. 
    more » « less
  5. Recently, the Resistive Random Access Memory (RRAM) has been paid more attention for edge computing applications in both academia and industry, because it offers power efficiency and low latency to perform the complex analog in-situ matrix-vector multiplication – the most fundamental operation of Deep Neural Networks (DNNs). But the Stuck at Fault (SAF) defect makes the RRAM unreliable for the practical implementation. A differential mapping method (DMM) is proposed in this paper to improve reliability by mitigate SAF defects from RRAM-based DNNs. Firstly, the weight distribution for the VGG8 model with the CIFAR10 dataset is presented and analyzed. Then the DMM is used for recovering the inference accuracies at 0.1% to 50% SAFs. The experiment results show that the DMM can recover DNNs to their original inference accuracies (90%), when the ratio of SAFs is smaller than 7.5%. And even when the SAF is in the extreme condition 50%, it is still highly efficient to recover the inference accuracy to 80%. What is more, the DMM is a highly reliable regulator to avoid power and timing overhead generated by SAFs. 
    more » « less