skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 1, 2026

Title: Tools for unbinned unfolding
Machine learning has enabled differential cross section measurements that are not discretized. Going beyond the traditional histogram-based paradigm, these unbinned unfolding methods are rapidly being integrated into experimental workflows. In order to enable widespread adaptation and standardization, we develop methods, benchmarks, and software for unbinned unfolding. For methodology, we demonstrate the utility of boosted decision trees for unfolding with a relatively small number of high-level features. This complements state-of-the-art deep learning models capable of unfolding the full phase space. To benchmark unbinned unfolding methods, we develop an extension of existing dataset to include acceptance effects, a necessary challenge for real measurements. Additionally, we directly compare binned and unbinned methods using discretized inputs for the latter in order to control for the binning itself. Lastly, we have assembled two software packages for the OmniFold unbinned unfolding method that should serve as the starting point for any future analyses using this technique. One package is based on the widely-used RooUnfold framework and the other is a standalone package available through the Python Package Index (PyPI).  more » « less
Award ID(s):
2311666 2311667
PAR ID:
10636823
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
IOP
Date Published:
Journal Name:
Journal of Instrumentation
Volume:
20
Issue:
05
ISSN:
1748-0221
Page Range / eLocation ID:
P05034
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Deconvolving (“unfolding”) detector distortions is a critical step in the comparison of cross-section measurements with theoretical predictions in particle and nuclear physics. However, most existing approaches require histogram binning while many theoretical predictions are at the level of statistical moments. We develop a new approach to directly unfold distribution moments as a function of another observable without having to first discretize the data. Our moment unfolding technique uses machine learning and is inspired by Boltzmann weight factors and generative adversarial networks (GANs). We demonstrate the performance of this approach using jet substructure measurements in collider physics. With this illustrative example, we find that our moment unfolding protocol is more precise than bin-based approaches and is as or more precise than completely unbinned methods. Published by the American Physical Society2024 
    more » « less
  2. null (Ed.)
    A reliable, accurate, and yet simple dynamic model is important to analyzing, designing, and controlling hybrid rigid–continuum robots. Such models should be fast, as simple as possible, and user-friendly to be widely accepted by the ever-growing robotics research community. In this study, we introduce two new modeling methods for continuum manipulators: a general reduced-order model (ROM) and a discretized model with absolute states and Euler–Bernoulli beam segments (EBA). In addition, a new formulation is presented for a recently introduced discretized model based on Euler–Bernoulli beam segments and relative states (EBR). We implement these models in a Matlab software package, named TMTDyn, to develop a modeling tool for hybrid rigid–continuum systems. The package features a new high-level language (HLL) text-based interface, a CAD-file import module, automatic formation of the system equation of motion (EOM) for different modeling and control tasks, implementing Matlab C-mex functionality for improved performance, and modules for static and linear modal analysis of a hybrid system. The underlying theory and software package are validated for modeling experimental results for (i) dynamics of a continuum appendage, and (ii) general deformation of a fabric sleeve worn by a rigid link pendulum. A comparison shows higher simulation accuracy (8–14% normalized error) and numerical robustness of the ROM model for a system with a small number of states, and computational efficiency of the EBA model with near real-time performances that makes it suitable for large systems. The challenges and necessary modules to further automate the design and analysis of hybrid systems with a large number of states are briefly discussed. 
    more » « less
  3. null (Ed.)
    A common setting for scientific inference is the ability to sample from a high-fidelity forward model (simulation) without having an explicit probability density of the data. We propose a simulation-based maximum likelihood deconvolution approach in this setting called OMNIFOLD. Deep learning enables this approach to be naturally unbinned and (variable-, and) high-dimensional. In contrast to model parameter estimation, the goal of deconvolution is to remove detector distortions in order to enable a variety of down-stream inference tasks. Our approach is the deep learning generalization of the common Richardson-Lucy approach that is also called Iterative Bayesian Unfolding in particle physics. We show how OMNIFOLD can not only remove detector distortions, but it can also account for noise processes and acceptance effects. 
    more » « less
  4. Abstract Unfolding is an ill-posed inverse problem in particle physics aiming to infer a true particle-level spectrum from smeared detector-level data. For computational and practical reasons, these spaces are typically discretized using histograms, and the smearing is modeled through a response matrix corresponding to a discretized smearing kernel of the particle detector. This response matrix depends on the unknown shape of the true spectrum, leading to a fundamental systematic uncertainty in the unfolding problem. To handle the ill-posed nature of the problem, common approaches regularize the problem either directly via methods such as Tikhonov regularization, or implicitly by using wide-bins in the true space that match the resolution of the detector. Unfortunately, both of these methods lead to a non-trivial bias in the unfolded estimator, thereby hampering frequentist coverage guarantees for confidence intervals constructed from these methods. We propose two new approaches to addressing the bias in the wide-bin setting through methods called One-at-a-time Strict Bounds (OSB) and Prior-Optimized (PO) intervals. The OSB intervals are a bin-wise modification of an existing guaranteed-coverage procedure, while the PO intervals are based on a decision-theoretic view of the problem. Importantly, both approaches provide well-calibrated frequentist confidence intervals even in constrained and rank-deficient settings. These methods are built upon a more general answer to the wide-bin bias problem, involving unfolding with fine bins first, followed by constructing confidence intervals for linear functionals of the fine-bin counts. We test and compare these methods to other available methodologies in a wide-bin deconvolution example and a realistic particle physics simulation of unfolding a steeply falling particle spectrum. 
    more » « less
  5. Wren, Jonathan (Ed.)
    Abstract Summary Heterogeneity is a hallmark of many complex human diseases, and unsupervised heterogeneity analysis has been extensively conducted using high-throughput molecular measurements and histopathological imaging features. ‘Classic’ heterogeneity analysis has been based on simple statistics such as mean, variance and correlation. Network-based analysis takes interconnections as well as individual variable properties into consideration and can be more informative. Several Gaussian graphical model (GGM)-based heterogeneity analysis techniques have been developed, but friendly and portable software is still lacking. To facilitate more extensive usage, we develop the R package HeteroGGM, which conducts GGM-based heterogeneity analysis using the advanced penaliztaion techniques, can provide informative summary and graphical presentation, and is efficient and friendly. Availabilityand implementation The package is available at https://CRAN.R-project.org/package=HeteroGGM. Supplementary information Supplementary data are available at Bioinformatics online. 
    more » « less