Abstract We report the results of the deepest search to date for dwarf galaxies around NGC 3109, a barred spiral galaxy with a mass similar to that of the Small Magellanic Cloud (SMC), using a semiautomated search method. Using the Dark Energy Camera, we survey a region covering a projected distance of ∼70 kpc of NGC 3109 (D= 1.3 Mpc,Rvir∼ 90 kpc,M∼ 108M*) as part of the MADCASH and DELVE-DEEP programs. We introduce a newly developed semiresolved search method, used alongside a resolved search, to identify crowded dwarf galaxies around NGC 3109. Using both approaches, we successfully recover the known satellites Antlia and Antlia B. We identified a promising candidate, which was later confirmed to be a background dwarf through deep follow-up observations. Our detection limits are well defined, with the sample ∼80% complete down toMV∼ −8.0, and include detections of dwarf galaxies as faint asMV∼ −6.0. This is the first comprehensive study of a satellite system through resolved stars around an SMC mass host. Our results show that NGC 3109 has more bright (MV∼ −9.0) satellites than the mean predictions from cold dark matter models, but well within the host-to-host scatter. A larger sample of LMC/SMC-mass hosts is needed to test whether or not the observations are consistent with current model expectations.
more »
« less
DELVE-DEEP Survey: The Faint Satellite System of NGC 55
Abstract We report the first comprehensive census of the satellite dwarf galaxies around NGC 55 (2.1 Mpc) as a part of the DECam Local Volume Exploration DEEP (DELVE-DEEP) survey. NGC 55 is one of four isolated, Magellanic analogs in the Local Volume around which DELVE-DEEP aims to identify faint dwarfs and other substructures. We employ two complementary detection methods: one targets fully resolved dwarf galaxies by identifying them as stellar overdensities, while the other focuses on semiresolved dwarf galaxies, detecting them through shredded unresolved light components. As shown through extensive tests with injected galaxies, our search is sensitive to candidates down toMV ≲ −6.6 and surface brightnessμ ≲ 28.5 mag arcsec2, and ∼80% complete down toMV ≲ −7.8. We do not report any new confirmed satellites beyond two previously known systems, ESO 294–010 and NGC 55-dw1. We construct the satellite luminosity function of NGC 55 and find it to be consistent with the predictions from cosmological simulations. As one of the first complete luminosity functions for a Magellanic analog, our results provide a glimpse of the constraints on low-mass-host satellite populations that will be further explored by upcoming surveys, such as the Vera C. Rubin Observatory’s Legacy Survey of Space and Time.
more »
« less
- PAR ID:
- 10636828
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- AAS Journals
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 990
- Issue:
- 2
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 108
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We have conducted a systematic search around the Milky Way (MW) analog NGC 253 (D= 3.5 Mpc), as a part of the Panoramic Imaging Survey of Centaurus and Sculptor (PISCeS)—a Magellan+Megacam survey to identify dwarfs and other substructures in resolved stellar light around MW-mass galaxies outside of the Local Group. In total, NGC 253 has five satellites identified by PISCeS within 100 kpc with an absoluteV-band magnitude ofMV< −7. We have additionally obtained deep Hubble Space Telescope imaging of four reported candidates beyond the survey footprint: Do III, Do IV, and dw0036m2828 are confirmed to be satellites of NGC 253, while SculptorSR is found to be a background galaxy. We find no convincing evidence for the presence of a plane of satellites surrounding NGC 253. We construct its satellite luminosity function, which is complete down toMV≲ −8 out to 100 kpc andMV≲ −9 out to 300 kpc, and compare it to those calculated for other Local Volume galaxies. Exploring trends in satellite counts and star-forming fractions among satellite systems, we find relationships with host stellar mass, environment, and morphology, pointing to a complex picture of satellite formation, and a successful model has to reproduce all of these trends.more » « less
-
Abstract We present the first comprehensive census of the satellite population around a Large Magellanic Cloud stellar-mass galaxy, as part of the Magellanic Analog Dwarf Companions and Stellar Halos (MADCASH) survey. We have surveyed NGC 2403 (D= 3.0 Mpc) with the Subaru/Hyper Suprime-Cam imager out to a projected radius of 90 kpc (with partial coverage extending out to ∼110 kpc, or ∼80% of the virial radius of NGC 2403), resolving stars in the uppermost ∼2.5 mag of its red giant branch. By looking for stellar overdensities in the red giant branch spatial density map, we identify 149 satellite candidates, of which only the previously discovered MADCASH J074238+65201-dw is a bona fide dwarf, together with the more massive and disrupting satellite DDO 44. We carefully assess the completeness of our search via injection of artificial dwarf galaxies into the images, finding that we are reliably sensitive to candidates down toMV∼ −7.5 mag (and somewhat sensitive to even fainter satellites). A comparison of the satellite luminosity function of NGC 2403 down to this magnitude limit to theoretical expectations shows overall good agreement. This is the first of a full sample of 11 Magellanic Cloud–mass host galaxies we will analyze, creating a statistical sample that will provide the first quantitative constraints on hierarchical models of galaxy formation around low-mass hosts.more » « less
-
We report results from a systematic wide-area search for faint dwarf galaxies at heliocentric distances from 0.3 to 2 Mpc using the full 6 yr of data from the Dark Energy Survey (DES). Unlike previous searches over the DES data, this search specifically targeted a field population of faint galaxies located beyond the Milky Way virial radius. We derive our detection efficiency for faint, resolved dwarf galaxies in the Local Volume with a set of synthetic galaxies and expect our search to be complete to M V ∼ (‑7, ‑10) mag for galaxies at D = (0.3, 2.0) Mpc. We find no new field dwarfs in the DES footprint, but we report the discovery of one high-significance candidate dwarf galaxy at a distance of $${2.2}_{-0.12}^{+0.05}\,\mathrm{Mpc}$$ , a potential satellite of the Local Volume galaxy NGC 55, separated by 47' (physical separation as small as 30 kpc). We estimate this dwarf galaxy to have an absolute V-band magnitude of $$-{8.0}_{-0.3}^{+0.5}\,\mathrm{mag}$$ and an azimuthally averaged physical half-light radius of $${2.2}_{-0.4}^{+0.5}\,\mathrm{kpc}$$ , making this one of the lowest surface brightness galaxies ever found with $$\mu =32.3\,\mathrm{mag}\,{\mathrm{arcsec}}^{-2}$$. This is the largest, most diffuse galaxy known at this luminosity, suggesting possible tidal interactions with its host.more » « less
-
Abstract We present results from Identifying Dwarfs of MC Analog GalaxiEs (ID-MAGE), a survey aimed at identifying and characterizing unresolved satellite galaxies around 35 nearby LMC- and SMC-mass hosts (D = 4−10 Mpc). We use archival DESI Legacy Survey imaging data and perform an extensive search for dwarf satellites, extending out to a radius of 150 kpc (∼Rvir). We identify 355 candidate satellite galaxies, including 264 new discoveries. Extensive tests with injected galaxies demonstrate that the survey is complete down toMV ∼ −9.0 (assuming the distance of the host) andμ0,V ∼ 26 mag arcsec−2(assuming ann = 1 Sérsic profile). We perform consistent photometry, via Sérsic profile fitting, on all candidates and have initiated a comprehensive follow-up campaign to confirm and characterize candidates. Through a systematic visual inspection campaign, we classify the top candidates as high-likelihood satellites. On average, we find 4.0 ± 1.4 high-likelihood candidate satellites per LMC-mass host and 2.1 ± 0.6 per SMC-mass host, which is within the range predicted by cosmological models. We use this sample to establish upper and lower estimates on the satellite luminosity function of LMC-/SMC-mass galaxies. ID-MAGE nearly triples the number of low-mass galaxies surveyed for satellites with well-characterized completeness limits, providing a unique data set to explore small-scale structure and dwarf galaxy evolution around low-mass hosts in diverse environments.more » « less
An official website of the United States government

