skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Mixed warm dark matter constraints using Milky Way satellite galaxy counts
Warm dark matter has been strongly constrained in recent years as the sole component of dark matter. However, a less-explored alternative is that dark matter consists of a mixture of warm and cold dark matter (MWDM). In this work, we use observations of Milky Way satellite galaxies to constrain MWDM scenarios where the formation of small-scale structure is suppressed either by generic thermal relic warm dark matter or a sterile neutrino produced through the Shi-Fuller mechanism. To achieve this, we model satellite galaxies by combining numerical simulations with semianalytical models for the subhalo population, and use a galaxy-halo connection model to match galaxies onto dark matter subhalos. By comparing the number of satellites predicted by MWDM models to the observed satellite population from the Dark Energy Survey and Pan-STARRS1, we constrain the fraction of warm dark matter, 𝑓WDM, as a function of its mass, 𝑚WDM. We exclude dark matter being composed entirely of thermal relic warm dark matter with 𝑚WDM ≤6.6  keV at a posterior ratio of 10∶1, consistent with previous works. However, we find that warm dark matter with smaller mass is allowed when mixed with cold dark matter, and that the 𝑓WDM constraints strengthen with decreasing 𝑚WDM until they plateau at 𝑓WDM ≲0.45 for 𝑚WDM ≲1.5  keV. Likewise, in the case of a sterile neutrino with mass of 7 keV produced through the Shi-Fuller mechanism, we exclude a fraction of 𝑓𝜈𝑠 ≲0.45, independent of mixing angle. Our results extend constraints on MWDM to a region of parameter space that has been relatively unconstrained with previous analysis.  more » « less
Award ID(s):
2307126
PAR ID:
10636872
Author(s) / Creator(s):
; ;
Publisher / Repository:
Physical Review Journals
Date Published:
Journal Name:
Physical Review D
Volume:
111
Issue:
6
ISSN:
2470-0010
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT The free-streaming length of dark matter depends on fundamental dark matter physics, and determines the abundance and concentration of dark matter haloes on sub-galactic scales. Using the image positions and flux ratios from eight quadruply imaged quasars, we constrain the free-streaming length of dark matter and the amplitude of the subhalo mass function (SHMF). We model both main deflector subhaloes and haloes along the line of sight, and account for warm dark matter free-streaming effects on the mass function and mass–concentration relation. By calibrating the scaling of the SHMF with host halo mass and redshift using a suite of simulated haloes, we infer a global normalization for the SHMF. We account for finite-size background sources, and marginalize over the mass profile of the main deflector. Parametrizing dark matter free-streaming through the half-mode mass mhm, we constrain the thermal relic particle mass mDM corresponding to mhm. At $$95 \, {\rm per\, cent}$$ CI: mhm < 107.8 M⊙ ($$m_{\rm {DM}} \gt 5.2 \ \rm {keV}$$). We disfavour $$m_{\rm {DM}} = 4.0 \,\rm {keV}$$ and $$m_{\rm {DM}} = 3.0 \,\rm {keV}$$ with likelihood ratios of 7:1 and 30:1, respectively, relative to the peak of the posterior distribution. Assuming cold dark matter, we constrain the projected mass in substructure between 106 and 109 M⊙ near lensed images. At $$68 \, {\rm per\, cent}$$ CI, we infer $$2.0{-}6.1 \times 10^{7}\, {{\rm M}_{\odot }}\,\rm {kpc^{-2}}$$, corresponding to mean projected mass fraction $$\bar{f}_{\rm {sub}} = 0.035_{-0.017}^{+0.021}$$. At $$95 \, {\rm per\, cent}$$ CI, we obtain a lower bound on the projected mass of $$0.6 \times 10^{7} \,{{\rm M}_{\odot }}\,\rm {kpc^{-2}}$$, corresponding to $$\bar{f}_{\rm {sub}} \gt 0.005$$. These results agree with the predictions of cold dark matter. 
    more » « less
  2. We present a mechanism for producing a cosmologically significant relic density of one or more sterile neutrinos. This scheme invokes two steps: First, a population of “heavy” sterile neutrinos is created by scattering-induced decoherence of active neutrinos. Second, this population is transferred, via sterile neutrino self-interaction-mediated scatterings and decays, to one or more lighter mass ( 10 keV to 1 GeV ) sterile neutrinos that are far more weakly (or not at all) mixed with active species and could constitute dark matter. Dark matter produced this way can evade current electromagnetic and structure-based bounds, but may nevertheless be probed by future observations. Published by the American Physical Society2024 
    more » « less
  3. Abstract We present an analysis of seven strongly gravitationally lensed quasars and the corresponding constraints on the properties of dark matter. Our results are derived by modelling the lensed image positions and flux-ratios using a combination of smooth macro models and a population of low-mass haloes within the mass range 106 to 109 M⊙. Our lens models explicitly include higher-order complexity in the form of stellar discs and luminous satellites, as well as low-mass haloes located along the observed lines of sight for the first time. Assuming a Cold Dark Matter (CDM) cosmology, we infer an average total mass fraction in substructure of $$f_{\rm sub} = 0.012^{+0.007}_{-0.004}$$ (68 per cent confidence limits), which is in agreement with the predictions from CDM hydrodynamical simulations to within 1σ. This result is closer to the predictions than those from previous studies that did not include line-of-sight haloes. Under the assumption of a thermal relic dark matter model, we derive a lower limit on the particle relic mass of mth > 5.58 keV (95 per cent confidence limits), which is consistent with a value of mth > 5.3 keV from the recent analysis of the Lyα forest. We also identify two main sources of possible systematic errors and conclude that deeper investigations in the complex structure of lens galaxies as well as the size of the background sources should be a priority for this field. 
    more » « less
  4. I introduce the consequences of neutrino mass and mixing in the dense environments of the early Universe and in astrophysical environments. Thermal and matter effects are reviewed in the context of a two-neutrino formalism, with methods of extension to multiple neutrinos. The observed large neutrino mixing angles place the strongest constraint on cosmological lepton (or neutrino) asymmetries, while new sterile neutrinos provide a wealth of possible new physics, including lepton asymmetry generation as well as candidates for dark matter. I also review cosmic microwave background and large-scale structure constraints on neutrino mass and energy density. Lastly, I review how X-ray astronomy has become a branch of neutrino physics in searches for keV-scale sterile neutrino dark matter radiative decay. 
    more » « less
  5. Abstract Novel neutrino self-interaction can open up viable parameter space for the relic abundance of sterile-neutrino dark matter (S ν DM). In this work, we constrain the relic target using core-collapse supernova which features the same fundamental process and a similar environment to the early universe era when S ν DM is dominantly produced. We present a detailed calculation of the effects of a massive scalar mediated neutrino self-interaction on the supernova cooling rate, including the derivation of the thermal potential in the presence of non-zero chemical potentials from plasma species. Our results demonstrate that the supernova cooling argument can cover the neutrino self-interaction parameter space that complements terrestrial and cosmological probes. 
    more » « less