skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on September 10, 2026

Title: Magnetic Field Amplification during a Turbulent Collapse
Abstract The question of whether a dynamo can be triggered by gravitational collapse is of great interest, especially for the early Universe. Here, we employ supercomoving coordinates to study the magnetic field amplification from decaying turbulence during gravitational collapse. We perform 3D simulations and show that for large magnetic Reynolds numbers, there can be exponential growth of the comoving magnetic field with conformal time before the decay of turbulence impedes further amplification. The collapse dynamics only affect the nonlinear feedback from the Lorentz force, which diminishes more rapidly for shorter collapse times, allowing nearly kinematic continued growth. We confirm that helical turbulence is more efficient in driving dynamo action than nonhelical turbulence, but this difference decreases for larger collapse times. We also show that for nearly irrotational flows, dynamo amplification is still possible, but it is always associated with a growth of vorticity—even if it still remains very small. In nonmagnetic runs, the growth of vorticity is associated with viscosity and grows with the Mach number. In the presence of magnetic fields, vorticity emerges from the curl of the Lorentz force. During a limited time interval, an exponential growth of the comoving magnetic field with conformal time is interpreted as clear evidence of dynamo action.  more » « less
Award ID(s):
2307698
PAR ID:
10636882
Author(s) / Creator(s):
;
Publisher / Repository:
AAS
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
990
Issue:
2
ISSN:
0004-637X
Page Range / eLocation ID:
223
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Magnetic fields grow quickly, even at early cosmological times, suggesting the action of a small-scale dynamo (SSD) in the interstellar medium (ISM) of galaxies. Many studies have focused on idealized, isotropic, homogeneous, turbulent driving of the SSD. Here we analyze more realistic simulations of supernova-driven turbulence to understand how it drives an SSD. We find that SSD growth rates are intermittently variable as a result of the evolving multiphase ISM structure. Rapid growth in the magnetic field typically occurs in hot gas, with the highest overall growth rates occurring when the fractional volume of hot gas is large. SSD growth rates correlate most strongly with vorticity and fluid Reynolds number, which also both correlate strongly with gas temperature. Rotational energy exceeds irrotational energy in all phases, but particularly in the hot phase while SSD growth is most rapid. Supernova rate does not significantly affect the ISM average kinetic energy density. Rather, higher temperatures associated with high supernova rates tend to increase SSD growth rates. SSD saturates with total magnetic energy density around 5% of equipartition to kinetic energy density, increasing slightly with magnetic Prandtl number. While magnetic energy density in the hot gas can exceed that of the other phases when SSD grows most rapidly, it saturates below 5% of equipartition with kinetic energy in the hot gas, while in the cold gas it attains 100%. Fast, intermittent growth of the magnetic field appears to be a characteristic behavior of supernova-driven, multiphase turbulence. 
    more » « less
  2. Abstract We report on a first-principles numerical and theoretical study of plasma dynamo in a fully kinetic framework. By applying an external mechanical force to an initially unmagnetized plasma, we develop a self-consistent treatment of the generation of “seed” magnetic fields, the formation of turbulence, and the inductive amplification of fields by the fluctuation dynamo. Driven large-scale motions in an unmagnetized, weakly collisional plasma are subject to strong phase mixing, which leads to the development of thermal pressure anisotropy. This anisotropy triggers the Weibel instability, which produces filamentary “seed” magnetic fields on plasma-kinetic scales. The plasma is thereby magnetized, enabling efficient stretching and folding of the fields by the plasma motions and the development of Larmor-scale kinetic instabilities such as the firehose and mirror. The scattering of particles off the associated microscale magnetic fluctuations provides an effective viscosity, regulating the field morphology and turbulence. During this process, the seed field is further amplified by the fluctuation dynamo until energy equipartition with the turbulent flow is reached. By demonstrating that equipartition magnetic fields can be generated from an initially unmagnetized plasma through large-scale turbulent flows, this work has important implications for the origin and amplification of magnetic fields in the intracluster and intergalactic mediums. 
    more » « less
  3. Abstract We study vorticity production in isothermal, subsonic, acoustic (nonvortical), and decaying turbulence due to the presence of magnetic fields. Using three-dimensional numerical simulations, we find that the resulting kinetic energy cascade follows the ordinary Kolmogorov phenomenology involving a constant spectral energy flux. The nondimensional prefactor for acoustic turbulence is larger than the standard Kolmogorov constant due to the inefficient dissipation of kinetic energy. We also find that the Lorentz force can drive vortical motions even when the initial field is uniform by converting a fraction of the acoustic energy into vortical energy. This conversion is shown to be quadratic in the magnetic field strength and linear in the acoustic flow speed. By contrast, the direct production of vortical motions by a non-force-free magnetic field is linear in the field strength. Our results suggest that magnetic fields play a crucial role in vorticity production in cosmological flows, particularly in scenarios where significant acoustic turbulence is prevalent. We also discuss the implications of our findings for the early Universe, where magnetic fields may convert acoustic turbulence generated during cosmological phase transitions into vortical turbulence. 
    more » « less
  4. ABSTRACT Large-scale magnetic fields in the nuclear regions of protogalaxies can promote the formation and early growth of supermassive black holes (SMBHs) by direct collapse and magnetically boosted accretion. Turbulence associated with gravitational infall and star formation can drive the rms field strength toward equipartition with the mean gas kinetic energy; this field has a generic tendency to self-organize into large coherent structures. If the poloidal component of the field (relative to the rotational axis of a star-forming disc) becomes organized on scales ≲r and attains an energy of order a few per cent of the turbulent energy in the disc, then dynamo effects are expected to generate magnetic torques capable of increasing the inflow speed and thickening the disc. The accretion flow can transport matter towards the centre of mass at a rate adequate to create and grow a massive direct-collapse black hole seed and fuel the subsequent AGN at a high rate, without becoming gravitationally unstable. Fragmentation and star formation are thus suppressed and do not necessarily deplete the mass supply for the accretion flow, in contrast to prevailing models for growing and fuelling SMBHs through disc accretion. 
    more » « less
  5. null (Ed.)
    Understanding magnetic-field generation and amplification in turbulent plasma is essential to account for observations of magnetic fields in the universe. A theoretical framework attributing the origin and sustainment of these fields to the so-called fluctuation dynamo was recently validated by experiments on laser facilities in low-magnetic-Prandtl-number plasmas ( P m < 1 ). However, the same framework proposes that the fluctuation dynamo should operate differently when P m ≳ 1 , the regime relevant to many astrophysical environments such as the intracluster medium of galaxy clusters. This paper reports an experiment that creates a laboratory P m ≳ 1 plasma dynamo. We provide a time-resolved characterization of the plasma’s evolution, measuring temperatures, densities, flow velocities, and magnetic fields, which allows us to explore various stages of the fluctuation dynamo’s operation on seed magnetic fields generated by the action of the Biermann-battery mechanism during the initial drive-laser target interaction. The magnetic energy in structures with characteristic scales close to the driving scale of the stochastic motions is found to increase by almost three orders of magnitude and saturate dynamically. It is shown that the initial growth of these fields occurs at a much greater rate than the turnover rate of the driving-scale stochastic motions. Our results point to the possibility that plasma turbulence produced by strong shear can generate fields more efficiently at the driving scale than anticipated by idealized magnetohydrodynamics (MHD) simulations of the nonhelical fluctuation dynamo; this finding could help explain the large-scale fields inferred from observations of astrophysical systems. 
    more » « less