skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on February 11, 2026

Title: Adoption of improved crop varieties limited biodiversity losses, terrestrial carbon emissions, and cropland expansion in the tropics
Research investments in crop improvements, including by national and international agricultural research centers, have made significant contributions to raising yields of staple food crops in developing countries. Although mostly intended to improve food security and rural incomes, innovations in crop production also have major implications for the environment. Building on the latest productivity estimates from historical crop improvements in developing countries and using a gridded (0.25 degrees) equilibrium model of global agriculture, we assess the impacts of improved crop varieties on cropland use, threatened biodiversity, and terrestrial carbon stocks over 1961–2015. We replicate a historical baseline and produce a counterfactual scenario which shows the impact of omitting productivity improvements from these technologies. The results show that higher crop productivity generally lowered commodity prices, which reduced incentives to expand cropland except in those areas where productivity gains outweighed price declines. The net global effect of technology adoption was to limit conversion of natural habitat to agricultural use, although it did cause cropland to expand in some areas. We estimate that adoption of improved crop varieties in developing countries saved on net 16.03 [95% CI, 12.33 to 20.89] million hectares worldwide. With more natural habitat preserved, around 1,043 [95% CI, 616 to 1,503] threatened animal and plant species extinctions were avoided over this period. In addition, net land use savings from the improved crop varieties resulted in avoided terrestrial greenhouse gas (GHG) emissions of around 5.35 [95% CI, 3.75 to 7.22] billion metric tons CO2equivalent retained in terrestrial carbon stocks.  more » « less
Award ID(s):
2118329 2020635
PAR ID:
10637101
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
National Academy of Sciences
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
122
Issue:
6
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Natural climate solutions provide opportunities to reduce greenhouse gas emissions and the United States is among a growing number of countries promoting storage of carbon in agricultural soils as part of the climate solution. Historical patterns of soil organic carbon (SOC) stock changes provide context about mitigation potential. Therefore, our objective was to quantify the influence of climate-smart soil practices on SOC stock changes in the top 30 cm of mineral soils for croplands in the United States using the DayCent Ecosystem Model. We estimated that SOC stocks increased annually in US croplands from 1995 to 2015, with the largest increase in 1996 of 16.6 Mt C (95% confidence interval ranging from 6.1 to 28.2 Mt CO2 eq.) and the lowest increase in 2015 of 10.6 Mt C (95% confidence interval ranging from − 1.8 to 22.2 Mt C). Most climate-smart soil practices contributed to increases in SOC stocks except for winter cover crops, which had a negligible impact due to a relatively small area with cover crop adoption. Our study suggests that there is potential for enhancing C sinks in cropland soils of the United States although some of the potential has been realized due to past adoption of climate-smart soil practices. 
    more » « less
  2. Louisiana is one of the most hazard-prone states in the U.S., and many of its people are engaged directly or indirectly in agricultural activities that are impacted by an array of weather hazards. However, most hazard impact research on agriculture to date, for Louisiana and elsewhere, has focused on floods and hurricanes. This research develops a method of future crop loss risk assessment due to droughts, extreme low and high temperatures, hail, lightning, and tornadoes, using Louisiana as a case study. This approach improves future crop risk assessment by incorporating historical crop loss, historical and modeled future hazard intensity, cropland extent, population, consumer demand, cropping intensity, and technological development as predictors of future risk. The majority of crop activities occurred and will continue to occur in south-central and northeastern Louisiana along the river basins. Despite the fact that cropland is decreasing across most of the state, weather impacts to cropland are anticipated to increase substantially by 2050. Drought is by far the costliest among the six hazards, accounting for $56.1 million of $59.2 million (∼95%) in 2050-projected crop loss, followed by extreme cold ($1.4 million), extreme heat ($1.0 million), tornadoes ($0.4 million), hail ($0.2 million), and lightning ($0.05 million), respectively. These findings will assist decision-makers to minimize risk and enhance agricultural resilience to future weather hazards, thereby strengthening this economically-important industry in Louisiana and enhancing food security. 
    more » « less
  3. Abstract Global food security can be threatened by short-term extreme events that negatively impact food production, food purchasing power, and agricultural economic activity. At the same time, environmental pollutants like greenhouse gases (GHGs) can be reduced due to the same short-term extreme stressors. Stress events include pandemics like COVID-19 and widespread droughts like those experienced in 2015. Here we consider the question: what if COVID-19 had co-occurred with a 2015-like drought year? Using a coupled biophysical-economic modeling framework, we evaluate how this compound stress would alter both agricultural sector GHG emissions and change the number of undernourished people worldwide. We further consider three interdependent adaptation options: local water use for crop production, regional shifts in cropland area, and global trade of agricultural products. We find that GHG emissions decline due to reduced economic activity in the agricultural sector, but this is paired with large increases in undernourished populations in developing nations. Local and regional adaptations that make use of natural resources enable global-scale reductions in impacted populations via increased global trade. 
    more » « less
  4. Abstract China increasingly relies on agricultural imports, driven by its rising population and income, as well as dietary shifts. International trade offers an opportunity to relieve pressures on resource depletion and pollution, such as nitrogen (N) pollution, while it poses multiple socioeconomic challenges, such as food availability. To quantify such trade-offs considering the roles of different crop types, we developed a unique crop-specific N budget database and assessed the impacts of the crop trade on multiple sustainability concerns including N pollution caused by crop production, crop land area, independence of food supply, and trade expenditures. We quantified the ‘virtual’ N inputs and harvested areas, which are the amount of N inputs and land resources used in exporting countries for China’s crop import. In addition, we proposed the concepts of ‘alternative’ N inputs and harvested area to quantify the resources needed if imported crops were produced in China. By comparing results from ‘alternative’ and ‘virtual’ concepts, we assessed the role of trade in Chinese crops over the past 30 years (i.e. 1986–2015) in alleviating N pollution and saving cropland in China and the world. Crop imports accounted for 31% of Chinese crop N consumption in 2015, and these crop imports eased the need for an additional cropland area of 62 million ha. It also avoided an N surplus by 56 and 36 Tg (Tg = 109kg) for China and the world respectively but led to $621 billion crop trade expenditures over the 30 year period. The N pollution damage avoided by crop imports in economic terms was priced at $22 ± 16 billion in 2015, which is lower than the crop trade expenditures but may be surpassed in the future with the development of the Chinese economy. Optimizing a crop trade portfolio can shift domestic production from N-intensive crop production (e.g. maize, fruits, and vegetables) to N-efficient crop production (e.g. soybeans), and consequently mitigate an N surplus by up to 12%. Improving N use efficiency for individual crops can further increase the mitigation potential of N surplus to 30%–50%, but requires technology advancement and policy incentives. 
    more » « less
  5. Abstract Irrigated agriculture in snow-dependent regions contributes significantly to global food production. This study quantifies the impacts of climate change on irrigated agriculture in the snow-dependent Yakima River Basin (YRB) in the Pacific Northwest United States. Here we show that increasingly severe droughts and temperature driven reductions in growing season significantly reduces expected annual agricultural productivity. The overall reduction in mean annual productivity also dampens interannual yield variability, limiting yield-driven revenue fluctuations. Our findings show that farmers who adapt to climate change by planting improved crop varieties may potentially increase their expected mean annaul productivity in an altered climate, but remain strongly vulnerable to irrigation water shortages that substantially increase interannual yield variability (i.e., increasing revenue volatility). Our results underscore the importance for crop adaptation strategies to simultaneously capture the biophysical effects of warming as well as the institutional controls on water availability. 
    more » « less