Abstract Inquiry instruction often neglects graphing. It gives students few opportunities to develop the knowledge and skills necessary to take advantage of graphs, and which are called for by current science education standards. Yet, it is not well known how to support graphing skills, particularly within middle school science inquiry contexts. Using qualitative graphs is a promising, but underexplored approach. In contrast to quantitative graphs, which can lead students to focus too narrowly on the mechanics of plotting points, qualitative graphs can encourage students to relate graphical representations to their conceptual meaning. Guided by the Knowledge Integration framework, which recognizes and guides students in integrating their diverse ideas about science, we incorporated qualitative graphing activities into a seventh grade web‐based inquiry unit about cell division and cancer treatment. In Study 1, we characterized the kinds of graphs students generated in terms of their integration of graphical and scientific knowledge. We also found that students (n = 30) using the unit made significant learning gains based on their pretest to post‐test scores. In Study 2, we compared students' performance in two versions of the same unit: One that had students construct, and second that had them critique qualitative graphs. Results showed that both activities had distinct benefits, and improved students' (n = 117) integrated understanding of graphs and science. Specifically, critiquing graphs helped students improve their scientific explanations within the unit, while constructing graphs led students to link key science ideas within both their in‐unit and post‐unit explanations. We discuss the relative affordances and constraints of critique and construction activities, and observe students' common misunderstandings of graphs. In all, this study offers a critical exploration of how to design instruction that simultaneously supports students' science and graph understanding within complex inquiry contexts.
more »
« less
Making Motion Meaningful: Mapping Body Movements onto Graphs
The ability to interpret graphs is foundational to understanding many science topics, although mastering this skill can prove challenging to many students. This article illustrates how a lesson on motion graphs was implemented in physical science classes using modern smartphone LiDAR technology. It also presents the differences in accessibility and student motivation that resulted from instruction with the novel technology as compared with commercially available sonic rangers. With the help of a free, publicly-available, gamified app, students used their walking movements to match motion graphs of increasing difficulty. Students demonstrated shifts in their intuition for making graphs and showed significant gains on a pre-post assessment. Teachers observed increased enthusiasm for learning about graphs with mobile devices.
more »
« less
- Award ID(s):
- 2114586
- PAR ID:
- 10637274
- Publisher / Repository:
- National Science Teaching Association
- Date Published:
- Journal Name:
- The Science Teacher
- Volume:
- 91
- Issue:
- 6
- ISSN:
- 0036-8555
- Page Range / eLocation ID:
- 57 to 64
- Subject(s) / Keyword(s):
- NGSS technology instructional strategies force and motion physical science physics
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Jones, D.; Ryan, Q.; Pawl, A. (Ed.)Data modeling and graphing skill sets are foundational to science learning and careers, yet students regularly struggle to master these basic competencies. Further, although educational researchers have uncovered numerous approaches to support sense-making with mathematical models of motion, teachers sometimes struggle to enact them due to a variety of reasons, including limited time and materials for lab-based teaching opportunities and a lack of awareness of student learning difficulties. In this paper, we introduce a free smartphone application that uses LiDAR data to support motion-based physics learning with an emphasis on graphing and mathematical modeling. We tested the embodied technology, called LiDAR Motion, with 106 students in a non-major, undergraduate physics classroom at a mid-sized, private university on the U.S. East Coast. In identical learning assessments issued both before and after the study, students working with LiDAR Motion improved their scores by a more significant margin than those using standard issue sonic rangers. Further, per a voluntary survey, students who used both technologies expressed a preference for LiDAR Motion. This mobile application holds potential for improving student learning in the classroom, at home, and in alternative learning environments.more » « less
-
This study presents a mobile app that facilitates undergraduate students to learn data science through their own full body motions. Leveraging the built-in camera of a mobile device, the proposed app captures the user and feeds their images into an open-source computer-vision algorithm that localizes the key joint points of human body. As students can participate in the entire data collection process, the obtained motion data is context-rich and personally relevant to them. The app utilizes the collected motion data to explain various concepts and methods in data science under the context of human movements. The app also visualizes the geometric interpretation of data through various visual aids, such as interactive graphs and figures. In this study, we use principal component analysis, a commonly used dimensionality reduction method, as an example to demonstrate the proposed learning framework. Strategies to encompass other learning modules are also discussed for further improvement.more » « less
-
As solar energy becomes increasingly affordable, many schools are considering installing new solar power systems. Can students contribute to the design, evaluation, and decision-making process in any way? Many students are familiar with solar power and energy, having researched solar energy on the internet, built solar cookers, inspected mini solar cells, gone on field trips to local solar farms, and so on. Well-informed and motivated, they are just one step away from taking responsibility for their own schools. In this article, we present Solarize Your School, an engineering project that gives students the opportunity to design and evaluate solar power solutions for their own schools. This STEM project requires students to learn and apply skills and practices related to solar energy and photovoltaic technology concepts, such as architectural measurement and modeling techniques, graphical interpretation and data analysis, budgeting and investing, scientific inquiry and engineering design, and collaboration and communication (see Next Generation Science Standards table, p. 47). Solarize Your School can be incorporated into environmental science, physical science, and engineering courses, and can be adapted to fit any curriculum scope and time frame. We suggest a 10-day sequence of learning activities. All the technologies and materials mentioned are freely available (see “On the web”).more » « less
-
Banu, Eliza A. (Ed.)Access to enriching science programs is not equitable, with students from affluent districts having more opportunities to develop their science, technology, engineering, and mathematics (STEM) skills than students from underserved districts. The Building Unique Inventions to Launch Discovery, Engagement, and Reasoning in STEM (BUILDERS) program was started in 2017 with support from the National Science Foundation’s ITEST program to provide students from the Alabama Black Belt with STEM opportunities to which they would otherwise have no access. This project-based learning (PBL) program uses the concept of a makerspace to allow students to explore how science and technology can be used to solve the problems that affect their own communities. During an intensive, 3-week summer experience (the BUILDERS Academy), teams of students enthusiastically use the makerspace to design, build, and test prototypes of technology-based solutions to their community problems. During this immersive PBL process, they acquire and apply STEM concepts, learn about STEM careers, and acquire valuable 21st century skills. An extension of the summer Academy into the academic year was moderately successful. Overall, these results highlight the need to make extracurricular STEM interventions available to underserved students in order to increase equitable access to practical and enriching educational experiences in STEM.more » « less
An official website of the United States government

