skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on August 7, 2026

Title: Stellar Dynamics in Open Clusters Increases the Binary Fraction and Mass Ratios: Evidence from Photometric Binaries in 35 Open Clusters
Using the Bayesian Analysis of Stellar Evolution-9 code and Gaia DR3, Pan-STARRS, and 2MASS data, we identify photometric binaries in 35 open clusters (OCs) and constrain their masses. We find a strong correlation between the binary fraction and cluster dynamical age and an even stronger correlation between core binary fraction and cluster dynamical age. We find that the binary mass-ratio (q) distribution of dynamically young OCs is statistically distinct from that of the old OCs. On average, dynamically young OCs display multimodalqdistributions rising toward unity and toward our detection limit ofq= 0.5 while more dynamically evolved clusters display more uniformqdistributions, often with a peak nearq= 1. Interestingly, the uniformqdistribution with a peak nearq= 1 is consistent with binaries in the field. We also observe a similar transition from multimodal to unimodalqdistributions when comparing low-mass to high-mass OCs in our sample. Finally, we find a correlation between the medianqof the binary population in a cluster and the cluster dynamical age. We interpret these results as an indication that dynamical encounters tend to increase the fraction of high-mass-ratio binaries within a given cluster—in particular within the cluster’s core, where stellar dynamics are likely more important. This may be the result of stellar exchanges that tend to produce binaries with largerqand/or the preferential disruption or evaporation of lower-qbinaries.  more » « less
Award ID(s):
2107738
PAR ID:
10637567
Author(s) / Creator(s):
;
Publisher / Repository:
The Astrophysical Journal
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
989
Issue:
1
ISSN:
0004-637X
Page Range / eLocation ID:
104
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present a robust methodology for identifying photometric binaries in star clusters. Using Gaia DR3, Pan-STARRS, and Two Micron All Sky Survey data, we self-consistently define the cluster parameters and binary demographics for the open clusters (OCs) NGC 2168 (M35), NGC 7789, NGC 6819, NGC 2682 (M67), NGC 188, and NGC 6791. These clusters span in age from ∼200 Myr (NGC 2168) to more than ∼8 Gyr (NGC 6791) and have all been extensively studied in the literature. We use the Bayesian Analysis of Stellar Evolution software suite to derive the age, distance, reddening, metallicity, binary fraction, and binary mass-ratio posterior distributions for each cluster. We perform a careful analysis of our completeness and also compare our results to previous spectroscopic surveys. For our sample of main-sequence stars with masses between 0.6 and 1M, we find that these OCs have similar binary fractions that are also broadly consistent with the field multiplicity fraction. Within the clusters, the binary fraction increases dramatically toward the cluster centers, likely a result of mass segregation. Furthermore nearly all clusters show evidence of mass segregation within the single and binary populations. The OC binary fraction increases significantly with cluster age in our sample, possibly due to a combination of mass-segregation and cluster-dissolution processes. We also find a hint of an anticorrelation between binary fraction and cluster central density as well as total cluster mass, possibly due to an increasing frequency of higher-energy close stellar encounters that inhibit long-period binary survival and/or formation. 
    more » « less
  2. null (Ed.)
    ABSTRACT The fraction of stars in binary systems within star clusters is important for their evolution, but what proportion of binaries form by dynamical processes after initial stellar accretion remains unknown. In previous work, we showed that dynamical interactions alone produced too few low-mass binaries compared to observations. We therefore implement an initial population of binaries in the coupled magnetohydrodynamics and direct N-body star cluster formation code torch. We compare simulations with, and without, initial binary populations and follow the dynamical evolution of the binary population in both sets of simulations, finding that both dynamical formation and destruction of binaries take place. Even in the first few million years of star formation, we find that an initial population of binaries is needed at all masses to reproduce observed binary fractions for binaries with mass ratios above the q ≥ 0.1 detection limit. Our simulations also indicate that dynamical interactions in the presence of gas during cluster formation modify the initial distributions towards binaries with smaller primary masses, larger mass ratios, smaller semimajor axes and larger eccentricities. Systems formed dynamically do not have the same properties as the initial systems, and systems formed dynamically in the presence of an initial population of binaries differ from those formed in simulations with single stars only. Dynamical interactions during the earliest stages of star cluster formation are important for determining the properties of binary star systems. 
    more » « less
  3. Abstract We search for mass segregation in the intermediate-aged open cluster NGC 6819 within a carefully identified sample of probable cluster members. Using photometry from Gaia, Pan-STARRS, and the Two Micron All Sky Survey as inputs for a Bayesian statistics software suite, BASE-9, we identify a rich population of (photometric) binaries and derive posterior distributions for the cluster age, distance, metallicity, and reddening, as well as star-by-star photometric membership probabilities, masses, and mass ratios (for binaries). Within our entire sample, we identify 2632 cluster members and 777 binaries. We then select a main-sequence “primary sample” with 14.85 <G< 19.5, containing 1342 cluster members and 250 binaries with mass ratiosq> 0.5, to investigate mass segregation. Within this primary sample, we find the binary radial distribution is significantly shifted toward the cluster center as compared to the single stars, resulting in a binary fraction that increases significantly toward the cluster core. Furthermore, we find that within the binary sample, more massive binaries have more centrally concentrated radial distributions than less massive binaries. The same is true for the single stars. We verify the expectation of mass segregation for this stellar sample in NGC 6819 through both relaxation time arguments and by investigating a sophisticatedN-body model of the cluster. Importantly, this is the first study to investigate mass segregation of the binaries in the open cluster NGC 6819. 
    more » « less
  4. Abstract We study the evolution of populations of binary stars within massive cluster-forming regions. We simulate the formation of young massive star clusters within giant molecular clouds with masses ranging from 2 × 104to 3.2 × 105M. We use Torch, which couples stellar dynamics, magnetohydrodynamics, star and binary formation, stellar evolution, and stellar feedback through the Amuseframework. We find that the binary fraction decreases during cluster formation at all molecular cloud masses. The binaries’ orbital properties also change, with stronger and quicker changes in denser, more massive clouds. Most of the changes we see can be attributed to the disruption of binaries wider than 100 au, although the close binary fraction also decreases in the densest cluster-forming region. The binary fraction for O stars remains above 90%, but exchanges and dynamical hardening are ubiquitous, indicating that O stars undergo frequent few-body interactions early during the cluster formation process. Changes to the populations of binaries are a by-product of hierarchical cluster assembly: most changes to the binary population take place when the star formation rate is high, and there are frequent mergers between subclusters in the cluster-forming region. A universal primordial binary distribution based on observed inner companions in the Galactic field is consistent with the binary populations of young clusters with resolved stellar populations, and the scatter between clusters of similar masses could be explained by differences in their formation history. 
    more » « less
  5. Abstract We present orbits for 24 binaries in the field of open cluster NGC 2516 (∼150 Myr) and 13 binaries in the field of open cluster NGC 2422 (∼130 Myr) using results from a multiyear radial-velocity (RV) survey of the cluster cores. Six of these systems are double-lined spectroscopic binaries. We fit these RV variable systems with orvara , a MCMC-based fitting program that models Keplerian orbits. We use precise stellar parallaxes and proper motions from Gaia EDR3 to determine cluster membership. We impose a barycentric RV prior on all cluster members; this significantly improves our orbital constraints. Two of our systems have periods between five and 15 days, the critical window in which tides efficiently damp orbital eccentricity. These binaries should be included in future analyses of circularization across similarly-aged clusters. We also find a relatively flat distribution of binary mass ratios, consistent with previous work. With the inclusion of TESS light curves for all available targets, we identity target 378–036252 as a new eclipsing binary. We also identify a field star whose secondary has a mass in the brown dwarf range, as well as two cluster members whose RVs suggest the presence of an additional companion. Our orbital fits will help constrain the binary fraction and binary properties across stellar age and across stellar environment. 
    more » « less