skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 1, 2025

Title: Trends in U.S. Atlantic Tropical Cyclone Damage, 1900–2022
Abstract A series of papers published since 1998 assert that U.S. tropical cyclone (TC) damage, when “normalized” for individual wealth, population, and inflation, exhibits no increase attributable to anthropogenic global warming (AGW). This result is here questioned for three reasons: 1) The then-year (no demographic or economic adjustments) U.S. TC damage increases 2.5% yr−1faster than U.S. then-year gross domestic product. This result, which is substantially due to the faster growth of assets in hurricane-prone states, shows that TC impacts on the total U.S. economy double every generation. 2) Fitting of an exponential curve to normalized damage binned by 5-yr “pentads” yields a growth rate of 1.06% yr−1since 1900, although causes besides AGW may contribute. 3) During the twenty-first century, when the Atlantic multidecadal oscillation (AMO) was in its warm phase, the most damaging U.S. TCs struck at twice the rate of the warm AMO of the twentieth century and 4 times the rate of the entire twentieth century, both warm and cool AMO phases. A key unanswered question is as follows: What will happen when (and if) the AMO returns to its cool phase later in this century? Significance StatementU.S. hurricane damage, normalized for changes in inflation, population, and wealth, increases by approximately 1% yr−1. For 1900–2022, 1% yr−1is equivalent to a factor of >3 increase, substantially but not entirely, attributable to climate change. The incidence of the most damaging tropical cyclones (TCs) approximately doubled in the twenty-first century compared with climatologically analogous periods of the twentieth century. These results contradict the previously published work that introduced normalization and found zero trend in normalized damage but are consistent with physical reasoning and modeling studies.  more » « less
Award ID(s):
1724198
PAR ID:
10637828
Author(s) / Creator(s):
; ;
Editor(s):
Qi, Hu
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Journal of Applied Meteorology and Climatology
Volume:
63
Issue:
12
ISSN:
1558-8424
Page Range / eLocation ID:
1499 to 1510
Subject(s) / Keyword(s):
Hurricanes/Typhoons Trends Damage assessment History
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Hu, Qi (Ed.)
    Abstract Pielke deprecates both the ICAT database, which he once recommended, and U.S. tropical cyclone (TC) damage estimates from the National Centers for Environmental Information (NCEI). We do not share these views. Willoughby et al. (hereafter WL24) is based upon ICAT damage for 1900–2017, both then-year and normalized for inflation, population, and individual wealth, extended to 2022 with National Hurricane Center (NHC) official figures from NCEI. Pielke represents the data of Weinkle et al. (hereafter WK18) as a superior source. We find troubling anomalies in the WK18 data. The issue is that WK18 find that normalized TC damage is constant, but WL24 find that it is increasing. Here, we replicate the WL24 analysis with WK18 data and find a statistically significant growth of then-year damage relative to the U.S. economy, a statistically significant increase in the occurrence of the most damaging TCs, and a 0.6% per year increase in TC normalized damage. The last of these is not statistically significant because of the large variance due to the modulation of TC impacts by the Atlantic multidecadal oscillation. Thus, the increase in U.S. TC damage is sufficiently robust to survive the shortcomings of both datasets. 
    more » « less
  2. null (Ed.)
    Abstract Sea level rise (SLR) and tropical cyclone (TC) climatology change could impact future flood hazards in Jamaica Bay—an urbanized back-barrier bay in New York—yet their compound impacts are not well understood. This study estimates the compound effects of SLR and TC climatology change on flood hazards in Jamaica Bay from a historical period in the late twentieth century (1980–2000) to future periods in the mid- and late-twenty-first century (2030–2050 and 2080–2100, under RCP8.5 greenhouse gas concentration scenario). Flood return periods are estimated based on probabilistic projections of SLR and peak storm tides simulated by a hydrodynamic model for large numbers of synthetic TCs. We find a substantial increase in the future flood hazards, e.g., the historical 100-year flood level would become a 9- and 1-year flood level in the mid- and late-twenty-first century and the 500-year flood level would become a 143- and 4-year flood level. These increases are mainly induced by SLR. However, TC climatology change would considerably contribute to the future increase in low-probability, high-consequence flood levels (with a return period greater than 100 year), likely due to an increase in the probability of occurrence of slow-moving but intense TCs by the end of twenty-first century. We further conduct high-resolution coastal flood simulations for a series of SLR and TC scenarios. Due to the SLR projected with a 5% exceedance probability, 125- and 1300-year flood events in the late-twentieth century would become 74- and 515-year flood events, respectively, in the late-twenty-first century, and the spatial extent of flooding over coastal floodplains of Jamaica Bay would increase by nearly 10 and 4 times, respectively. In addition, SLR leads to larger surface waves induced by TCs in the bay, suggesting a potential increase in hazards associated with wave runup, erosion, and damage to coastal infrastructure. 
    more » « less
  3. Landsea, C (Ed.)
    Abstract Since 1900, landfalling hurricanes have been the costliest of all weather-related disasters to afflict the contiguous United States. To provide a present-day (2022) reevaluation of this risk, this study employs an improved normalization approach to better understand potential economic event losses in the context of contemporary societal conditions. The updated methodology identifies impacted coastal counties using the newly available radius of maximum winds at landfall. Hurricane Katrina is the most expensive hurricane since 1900, with a likely 2022 normalized cost of $234 billion. Combined losses from the 50 most expensive hurricane events are ∼ $2.9 trillion in normalized economic losses. The study also explores some “analog storms” where comparisons can be made between two historic storms with similar landfall locations. For example, category 5 Andrew (1992) has lower 2022 normalized losses than category 4 Great Miami (1926), at $125 billion versus $178 billion, most likely due to the significantly different radius of maximum wind size (10 vs 20 n mi; 1 n mi = 1.852 km). As with previous studies, we conclude that increases in inflation, coastal population, regional wealth, and higher replacement costs remain the primary drivers of observed increases in hurricane-related damage. These upsurges are especially impactful for some coastal regions along the U.S. Gulf and Southeast Coasts that have seen exceptionally high rates of population/housing growth in comparison to countrywide growth. Exposure growth trends are likely to continue in the future and, independent of any influence of climate change on tropical cyclone behavior, are expected to result in greater hurricane-related damage costs than have been previously observed. 
    more » « less
  4. Abstract Tropical cyclone (TC) hazards coupled with dense urban development along the coastline have resulted in trillions in US damages over the past several decades, with an increasing trend in losses in recent years. So far, this trend has been driven by increasing coastal development. However, as the climate continues to warm, changing TC climatology may also cause large changes in coastal damages in the future. Approaches to quantifying regional TC risk typically focus on total storm damage. However, it is crucial to understand the spatial footprint of TC damage and ultimately the spatial distribution of TC risk. Here, we quantify the magnitude and spatial pattern of TC risk (in expected annual damage) across the US from wind, storm surge, and rainfall using synthetic TCs, physics-based hazard models, and a county-level statistical damage model trained on historical TC data. We then combine end-of-century TC hazard simulations with US population growth and wealth increase scenarios (under the SSP2 4.5 emission scenario) to investigate the sensitivity of changes in TC risk across the US Atlantic and Gulf coasts. We find that not directly accounting for the effects of rainfall and storm surge results in much lower risk estimates and smaller future increases in risk. TC climatology change and socioeconomic change drive similar magnitude increases in total expected annual damage across the US (roughly 160%), and that their combined effect (633% increase) is much higher. 
    more » « less
  5. Abstract Assessing the role of anthropogenic warming from temporally inhomogeneous historical data in the presence of large natural variability is difficult and has caused conflicting conclusions on detection and attribution of tropical cyclone (TC) trends. Here, using a reconstructed long-term proxy of annual TC numbers together with high-resolution climate model experiments, we show robust declining trends in the annual number of TCs at global and regional scales during the twentieth century. The Twentieth Century Reanalysis (20CR) dataset is used for reconstruction because, compared with other reanalyses, it assimilates only sea-level pressure fields rather than utilize all available observations in the troposphere, making it less sensitive to temporal inhomogeneities in the observations. It can also capture TC signatures from the pre-satellite era reasonably well. The declining trends found are consistent with the twentieth century weakening of the Hadley and Walker circulations, which make conditions for TC formation less favourable. 
    more » « less