skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Wall Modeling of Turbulent Flows with Varying Pressure Gradients Using Multi-Agent Reinforcement Learning
We propose a framework for developing wall models for large-eddy simulation that is able to capture pressure-gradient effects using multi-agent reinforcement learning. Within this framework, the distributed reinforcement learning agents receive off-wall environmental states, including pressure gradient and turbulence strain rate, ensuring adaptability to a wide range of flows characterized by pressure-gradient effects and separations. Based on these states, the agents determine an action to adjust the wall eddy viscosity and, consequently, the wall-shear stress. The model training is in situ with wall-modeled large-eddy simulation grid resolutions and does not rely on the instantaneous velocity fields from high-fidelity simulations. Throughout the training, the agents compute rewards from the relative error in the estimated wall-shear stress, which allows them to refine an optimal control policy that minimizes prediction errors. Employing this framework, wall models are trained for two distinct subgrid-scale models using low-Reynolds-number flow over periodic hills. These models are validated through simulations of flows over periodic hills at higher Reynolds numbers and flows over the Boeing Gaussian bump. The developed wall models successfully capture the acceleration and deceleration of wall-bounded turbulent flows under pressure gradients and outperform the equilibrium wall model in predicting skin friction.  more » « less
Award ID(s):
2152705
PAR ID:
10637856
Author(s) / Creator(s):
;
Publisher / Repository:
AIAA Journal
Date Published:
Journal Name:
AIAA Journal
Volume:
62
Issue:
10
ISSN:
0001-1452
Page Range / eLocation ID:
3713 to 3727
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We develop a wall model for large-eddy simulation (LES) that takes into account various pressure-gradient effects using multi-agent reinforcement learning. The model is trained using low-Reynolds-number flow over periodic hills with agents distributed on the wall at various computational grid points. It utilizes a wall eddy-viscosity formulation as the boundary condition to apply the modeled wall shear stress. Each agent receives states based on local instantaneous flow quantities at an off-wall location, computes a reward based on the estimated wall-shear stress, and provides an action to update the wall eddy viscosity at each time step. The trained wall model is validated in wall-modeled LES of flow over periodic hills at higher Reynolds numbers, and the results show the effectiveness of the model on flow with pressure gradients. The analysis of the trained model indicates that the model is capable of distinguishing between the various pressure gradient regimes present in the flow. To further assess the robustness of the developed wall model, simulations of flow over the Boeing Gaussian bump are conducted at a Reynolds number of 2 million, based on the free-stream velocity and the bump width. The results of mean skin friction and pressure on the bump surface, as well as the velocity statistics of the flow field, are compared to those obtained from equilibrium wall model (EQWM) simulations and published experimental data sets. The developed wall model is found to successfully capture the acceleration and deceleration of the turbulent boundary layer on the bump surface, providing better predictions of skin friction near the bump peak and exhibiting comparable performance to the EQWM with respect to the wall pressure and velocity field. We also conclude that the subgrid-scale model is crucial to the accurate prediction of the flow field, in particular the prediction of separation. 
    more » « less
  2. In this study, we conduct a parametric analysis to evaluate the sensitivities of wall-modeled large-eddy simulation (LES) with respect to subgrid-scale (SGS) models, mesh resolution, wall boundary conditions and mesh anisotropy. While such investigations have been conducted for attached/flat-plate flow configurations, systematic studies specifically targeting turbulent flows with separation are notably sparse. To bridge this gap, our study focuses on the flow over a two-dimensional Gaussian-shaped bump at a moderately high Reynolds number, which involves smooth-body separation of a turbulent boundary layer under pressure-gradient and surface- curvature effects. In the simulations, the no-slip condition at the wall is replaced by three different forms of boundary condition based on the thin boundary layer equations and the mean wall-shear stress from high-fidelity numerical simulation to avoid the additional complexity of modeling the wall-shear stress. Various statistics, including the mean separation bubble size, mean velocity profile, and dissipation from SGS model, are compared and analyzed. The results reveal that capturing the separation bubble strongly depends on the choice of SGS model. While simulations approach grid convergence with resolutions nearing those of wall-resolved LES meshes, above this limit, the LES predictions exhibit intricate sensitivities to mesh resolution. Furthermore, both wall boundary conditions and the anisotropy of mesh cells exert discernible impacts on the turbulent flow predictions, yet the magnitudes of these impacts vary based on the specific SGS model chosen for the simulation. 
    more » « less
  3. Near-wall flow simulation remains a central challenge in aerodynamics modelling: Reynolds-averaged Navier–Stokes predictions of separated flows are often inaccurate, and large-eddy simulation (LES) can require prohibitively small near-wall mesh sizes. A deep learning (DL) closure model for LES is developed by introducing untrained neural networks into the governing equations and training in situ for incompressible flows around rectangular prisms at moderate Reynolds numbers. The DL-LES models are trained using adjoint partial differential equation (PDE) optimization methods to match, as closely as possible, direct numerical simulation (DNS) data. They are then evaluated out-of-sample – for aspect ratios, Reynolds numbers and bluff-body geometries not included in the training data – and compared with standard LES models. The DL-LES models outperform these models and are able to achieve accurate LES predictions on a relatively coarse mesh (downsampled from the DNS mesh by factors of four or eight in each Cartesian direction). We study the accuracy of the DL-LES model for predicting the drag coefficient, near-wall and far-field mean flow, and resolved Reynolds stress. A crucial challenge is that the LES quantities of interest are the steady-state flow statistics; for example, a time-averaged velocity component $$\langle {u}_i\rangle (x) = \lim _{t \rightarrow \infty } ({1}/{t}) \int _0^t u_i(s,x)\, {\rm d}s$$ . Calculating the steady-state flow statistics therefore requires simulating the DL-LES equations over a large number of flow times through the domain. It is a non-trivial question whether an unsteady PDE model with a functional form defined by a deep neural network can remain stable and accurate on $$t \in [0, \infty )$$ , especially when trained over comparatively short time intervals. Our results demonstrate that the DL-LES models are accurate and stable over long time horizons, which enables the estimation of the steady-state mean velocity, fluctuations and drag coefficient of turbulent flows around bluff bodies relevant to aerodynamics applications. 
    more » « less
  4. Large-eddy simulations (LES) above forests and cities typically constrain the simulation domain to the first 10--20\% of the Atmospheric Boundary Layer (ABL), aiming to represent the finer details of the roughness elements and sublayer. These simulations are also commonly driven by a constant pressure gradient term in the streamwise direction and zero stress at the top, resulting in an unrealistic fast decay of the total stress profile. In this study, we investigate five LES setups, including pressure and/or top-shear driven flows with and without the Coriolis force, with the aim of identifying which option best represents turbulence profiles in the atmospheric surface layer (ASL). We show that flows driven solely by pressure not only result in a fast-decaying stress profile, but also in lower velocity variances and higher velocity skewnesses. Top-shear driven flows, on the other hand, better replicate ASL statistics. Overall, we recommend, and provide setup guidance for, simulation designs that include both a large scale pressure forcing and a non-zero stress and scalar flux at the top of the domain, and that also represent the Coriolis force. Such setups retain all the forces used in typical full ABL cases and result in the best match of the profiles of various statistical moments. 
    more » « less
  5. An incoming canonical spatially developing turbulent boundary layer (SDTBL) over a 2-D curved hill is numerically investigated via the Reynolds-averaged Navier–Stokes (RANS) equations plus two eddy-viscosity models: the K−ω SST (henceforth SST) and the Spalart–Allmaras (henceforth SA) turbulence models. A spatially evolving thermal boundary layer has also been included, assuming temperature as a passive scalar (Pr = 0.71) and a turbulent Prandtl number, Prt, of 0.90 for wall-normal turbulent heat flux modeling. The complex flow with a combined strong adverse/favorable streamline curvature-driven pressure gradient caused by concave/convex surface curvatures has been replicated from wind-tunnel experiments from the literature, and the measured velocity and pressure fields have been used for validation purposes (the thermal field was not experimentally measured). Furthermore, direct numerical simulation (DNS) databases from the literature were also employed for the incoming turbulent flow assessment. Concerning first-order statistics, the SA model demonstrated a better agreement with experiments where the turbulent boundary layer remained attached, for instance, in Cp, Cf, and Us predictions. Conversely, the SST model has shown a slightly better match with experiments over the flow separation zone (in terms of Cp and Cf) and in Us profiles just upstream of the bubble. The Reynolds analogy, based on the St/(Cf/2) ratio, holds in zero-pressure gradient (ZPG) zones; however, it is significantly deteriorated by the presence of streamline curvature-driven pressure gradient, particularly due to concave wall curvature or adverse-pressure gradient (APG). In terms of second-order statistics, the SST model has better captured the positively correlated characteristics of u′ and v′ or positive Reynolds shear stresses ( > 0) inside the recirculating zone. Very strong APG induced outer secondary peaks in and turbulence production as well as an evident negative slope on the constant shear layer. 
    more » « less