We study local filters for the Lipschitz property of real-valued functions f : V → [0,r], where the Lipschitz property is defined with respect to an arbitrary undirected graph G = (V, E ). We give nearly optimal local Lipschitz filters both with respect to ℓ1-distance and ℓ0-distance. Previous work only considered unbounded- range functions over [n]d. Jha and Raskhodnikova (SICOMP ‘13) gave an algorithm for such functions with lookup complexity exponential in d, which Awasthi et al. (ACM Trans. Comput. Theory) showed was necessary in this setting. We demonstrate that important applications of local Lipschitz filters can be accomplished with filters for functions whose range is bounded in [0,r]. For functions f : [n]d → [0,r], we achieve running time (dr log n )O (log r ) for the ℓ1-respecting filter and dO(r) polylog n for the ℓ0-respecting filter, thus circumventing the lower bound. Our local filters provide a novel Lipschitz extension that can be implemented locally. Furthermore, we show that our algorithms are nearly optimal in terms of the dependence on r for the domain {0,1}d, an important special case of the domain [n]d. In addition, our lower bound resolves an open question of Awasthi et al., removing one of the conditions necessary for their lower bound for general range. We prove our lower bound via a reduction from distribution-free Lipschitz testing and a new technique for proving hardness for adaptive algorithms. Finally, we provide two applications of our local filters to real-valued functions, with no restrictions on the range. In the first application, we use them in conjunction with the Laplace mechanism for differential privacy and noisy binary search to provide mechanisms for privately releasing outputs of black-box functions, even in the presence of malicious clients. In particular, our differentially private mechanism for arbitrary real-valued functions runs in time 2polylog min(r,nd ) and, for honest clients, has accuracy comparable to the Laplace mechanism for Lipschitz functions, up to a factor of O (log min(r,nd )). In the second application, we use our local filters to obtain the first nontrivial tolerant tester for the Lipschitz property. Our tester works for functions of the form f : {0,1}d → ℝ, makes queries, and has tolerance ratio 2.01. Our applications demonstrate that local filters for bounded-range functions can be applied to construct efficient algorithms for arbitrary real-valued functions. 
                        more » 
                        « less   
                    This content will become publicly available on January 1, 2026
                            
                            Debiasing Functions of Private Statistics in Postprocessing
                        
                    
    
            Given a differentially private unbiased estimate q̃ = q(D) +ν of a statistic q(D), we wish to obtain unbiased estimates of functions of q(D), such as 1/q(D), solely through post-processing of q̃, with no further access to the confidential dataset D. To this end, we adapt the deconvolution method used for unbiased estimation in the statistical literature, deriving unbiased estimators for a broad family of twice-differentiable functions - those that are tempered distributions - when the privacy-preserving noise ν is drawn from the Laplace distribution (Dwork et al., 2006). We further extend this technique to functions other than tempered distributions, deriving approximately optimal estimators that are unbiased for values in a user-specified interval (possibly extending to ± ∞). We use these results to derive an unbiased estimator for private means when the size n of the dataset is not publicly known. In a numerical application, we find that a mechanism that uses our estimator to return an unbiased sample size and mean outperforms a mechanism that instead uses the previously known unbiased privacy mechanism for such means (Kamath et al., 2023). We also apply our estimators to develop unbiased transformation mechanisms for per-record differential privacy, a privacy concept in which the privacy guarantee is a public function of a record’s value (Seeman et al., 2024). Our mechanisms provide stronger privacy guarantees than those in prior work (Finley et al., 2024) by using Laplace, rather than Gaussian, noise. Finally, using a different approach, we go beyond Laplace noise by deriving unbiased estimators for polynomials under the weak condition that the noise distribution has sufficiently many moments. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10637898
- Editor(s):
- Bun, Mark
- Publisher / Repository:
- Schloss Dagstuhl – Leibniz-Zentrum für Informatik
- Date Published:
- Volume:
- 329
- ISSN:
- 1868-8969
- ISBN:
- 978-3-95977-367-6
- Page Range / eLocation ID:
- 17:1-17:18
- Subject(s) / Keyword(s):
- Differential privacy deconvolution unbiasedness Security and privacy → Data anonymization and sanitization Mathematics of computing → Probability and statistics Theory of computation → Theory of database privacy and security
- Format(s):
- Medium: X Size: 18 pages; 877268 bytes Other: application/pdf
- Size(s):
- 18 pages 877268 bytes
- Right(s):
- Creative Commons Attribution 4.0 International license; info:eu-repo/semantics/openAccess
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            null (Ed.)Summary We consider the problem of approximating smoothing spline estimators in a nonparametric regression model. When applied to a sample of size $$n$$, the smoothing spline estimator can be expressed as a linear combination of $$n$$ basis functions, requiring $O(n^3)$ computational time when the number $$d$$ of predictors is two or more. Such a sizeable computational cost hinders the broad applicability of smoothing splines. In practice, the full-sample smoothing spline estimator can be approximated by an estimator based on $$q$$ randomly selected basis functions, resulting in a computational cost of $O(nq^2)$. It is known that these two estimators converge at the same rate when $$q$$ is of order $$O\{n^{2/(pr+1)}\}$$, where $$p\in [1,2]$$ depends on the true function and $r > 1$ depends on the type of spline. Such a $$q$$ is called the essential number of basis functions. In this article, we develop a more efficient basis selection method. By selecting basis functions corresponding to approximately equally spaced observations, the proposed method chooses a set of basis functions with great diversity. The asymptotic analysis shows that the proposed smoothing spline estimator can decrease $$q$$ to around $$O\{n^{1/(pr+1)}\}$$ when $$d\leq pr+1$$. Applications to synthetic and real-world datasets show that the proposed method leads to a smaller prediction error than other basis selection methods.more » « less
- 
            Differential privacy mechanisms such as the Gaussian or Laplace mechanism have been widely used in data analytics for preserving individual privacy. However, they are mostly designed for continuous outputs and are unsuitable for scenarios where discrete values are necessary. Although various quantization mechanisms were proposed recently to generate discrete outputs under differential privacy, the outcomes are either biased or have an inferior accuracy-privacy trade-off. In this paper, we propose a family of quantization mechanisms that is unbiased and differentially private. It has a high degree of freedom and we show that some existing mechanisms can be considered as special cases of ours. To find the optimal mechanism, we formulate a linear optimization that can be solved efficiently using linear programming tools. Experiments show that our proposed mechanism can attain a better privacy-accuracy trade-off compared to baselines.more » « less
- 
            A private learner is trained on a sample of labeled points and generates a hypothesis that can be used for predicting the labels of newly sampled points while protecting the privacy of the training set [Kasiviswannathan et al., FOCS 2008]. Past research uncovered that private learners may need to exhibit significantly higher sample complexity than non-private learners as is the case of learning of one-dimensional threshold functions [Bun et al., FOCS 2015, Alon et al., STOC 2019]. We explore prediction as an alternative to learning. A predictor answers a stream of classification queries instead of outputting a hypothesis. Earlier work has considered a private prediction model with a single classification query [Dwork and Feldman, COLT 2018]. We observe that when answering a stream of queries, a predictor must modify the hypothesis it uses over time, and in a manner that cannot rely solely on the training set. We introduce private everlasting prediction taking into account the privacy of both the training set and the (adaptively chosen) queries made to the predictor. We then present a generic construction of private everlasting predictors in the PAC model. The sample complexity of the initial training sample in our construction is quadratic (up to polylog factors) in the VC dimension of the concept class. Our construction allows prediction for all concept classes with finite VC dimension, and in particular threshold functions over infinite domains, for which (traditional) private learning is known to be impossible.more » « less
- 
            Koyejo, S.; Mohamed, S.; Agarwal, A.; Belgrave, D.; Cho, K.; Oh, A. (Ed.)A canonical noise distribution (CND) is an additive mechanism designed to satisfy f-differential privacy (f-DP), without any wasted privacy budget. f-DP is a hypothesis testing-based formulation of privacy phrased in terms of tradeoff functions, which captures the difficulty of a hypothesis test. In this paper, we consider the existence and construction of both log-concave CNDs and multivariate CNDs. Log-concave distributions are important to ensure that higher outputs of the mechanism correspond to higher input values, whereas multivariate noise distributions are important to ensure that a joint release of multiple outputs has a tight privacy characterization. We show that the existence and construction of CNDs for both types of problems is related to whether the tradeoff function can be decomposed by functional composition (related to group privacy) or mechanism composition. In particular, we show that pure epsilon-DP cannot be decomposed in either way and that there is neither a log-concave CND nor any multivariate CND for epsilon-DP. On the other hand, we show that Gaussian-DP, (0,delta)-DP, and Laplace-DP each have both log-concave and multivariate CNDs.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
