Opportunities for undergraduate research in STEM programs at community colleges can be few where lower-division science curriculum emphasizes classroom and laboratory-based learning and research laboratories are limited in number. This is particularly true in the geosciences where specialized programs are extremely rare. Urban serving academic research institutions have a unique role and opportunity to partner with regional community college programs for undergraduate research early-on in student post-secondary educational experiences. Programs built for community college transfer students to urban serving undergraduate programs can serve to integrate students into major programs and help reduce transfer shock. The benefits of exploring research as an undergraduate scholar are numerous and include: building towards mastery of technical skills; developing problem-solving in a real-world environment; reading and digesting scientific literature; analyzing experimental and simulation data; working independently and as part of a team; developing a mentoring relationship with a research advisor; and building a sense of belonging and confidence in a scientific field. However, many undergraduate research internships are targeted towards junior-level STEM majors already engaged in upper-division coursework and considering graduate school which effectively excludes community college students from participating. The Center for Climate and Aerosol Research (CCAR) Research Experience for Undergraduate program at Portland State University serves to help build the future diverse research community. 10-week intern research experiences are paired with an expert faculty mentor are designed for students majoring in the natural/physical sciences but not necessarily with a background in climate or atmospheric science. Additional programmatic activities include: 1-week orientation and training using short courses, faculty research seminars, and hands-on group workshops; academic professional and career development workshops throughout summer; journal club activities; final presentations at end of summer CCAR symposium; opportunities for travel for student presentations at scientific conferences; and social activities. Open to all qualifying undergraduates, since 2014 the program recruits primarily from regional (Northwest) community colleges, rural schools, and Native American serving institutions; recruiting students who would be unlikely to be otherwise exposed to such opportunities at their home institution. Over the past 9 cohorts of REU interns (2014-2019), approximately one third of CCAR REU scholars are community colleges students. Here we present criteria employed for selection of REU scholars and an analysis of selection biases in a comparison of students from community colleges, 4-year colleges, and PhD granting universities. We further investigate differential outcomes in efficacy of the REU program using evaluation data to assess changes over the program including: knowledge, intrinsic motivation, extrinsic motivation, science identity, program satisfaction, and career aspirations. In this presentation, we present these findings along with supportive qualitative analyses and discuss their implications for community college students in undergraduate research programs in geosciences.
more »
« less
Running a successful STEMM summer program: A week‐by‐week guide
Abstract While some established undergraduate summer programs are effective across many institutions, these programs may only be available to some principal investigators or may not fully address the diverse needs of incoming undergraduates. This article outlines a 10‐week science, technology, engineering, mathematics, and medicine (STEMM) education program designed to prepare undergraduate students for graduate school through a unique model incorporating mentoring dyads and triads, cultural exchanges, and diverse activities while emphasizing critical thinking, research skills, and cultural sensitivity. Specifically, we offer a straightforward and adaptable guide that we have used for mentoring undergraduate students in a laboratory focused on mitochondria and microscopy, but which may be customized for other disciplines. Key components include self‐guided projects, journal clubs, various weekly activities such as mindfulness training and laboratory techniques, and a focus on individual and cultural expression. Beyond this unique format, this 10‐week program also seeks to offer an intensive research program that emulates graduate‐level experiences, offering an immersive environment for personal and professional development, which has led to numerous achievements for past students, including publications and award‐winning posters.
more »
« less
- Award ID(s):
- 2011577
- PAR ID:
- 10637928
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Journal of Cellular Physiology
- Volume:
- 239
- Issue:
- 7
- ISSN:
- 0021-9541
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Universities have been expanding undergraduate data science programs. Involving graduate students in these new opportunities can foster their growth as data science educators. We describe two programs that employ a near-peer mentoring structure, in which graduate students mentor undergraduates, to (a) strengthen their teaching and mentoring skills and (b) provide research and learning experiences for undergraduates from diverse backgrounds. In the Data Science for Social Good program, undergraduate participants work in teams to tackle a data science project with social impact. Graduate mentors guide project work and provide just-in-time teaching and feedback. The Stanford Mentoring in Data Science course offers training in effective and inclusive mentorship strategies. In an experiential learning framework, enrolled graduate students are paired with undergraduate students from non-R1 schools, whom they mentor through weekly one-on-one remote meetings. In end-of-program surveys, mentors reported growth through both programs. Drawing from these experiences, we developed a self-paced mentor training guide, which engages teaching, mentoring and project management abilities. These initiatives and the shared materials can serve as prototypes of future programs that cultivate mutual growth of both undergraduate and graduate students in a high-touch, inclusive, and encouraging environment.more » « less
-
Undergraduate and graduate students need professional development skills to form expertise applicable to any job or future career. Mentoring is a way that students can learn how to engage in professional development. Likewise, students can learn professional development skills from mentors who they look to for expanding their knowledge base. To help address the needs of undergraduate and graduate students in engineering, the principal investigator developed and facilitated the Mentoring and Professional Development in Engineering Education (MPD-E2) Program. For this study, we examined the program’s general functions and elements using session notes and discussion of our observations. The guiding research question for this study is: what are some elements of a mentoring and professional development program that students value? In this work, we present details about the elements of the program that support student development and insights about potential future opportunities for these types of programs.more » « less
-
Undergraduate research experiences (UREs) significantly enhance students’ critical thinking, problem-solving, and teamwork skills, and foster pathways to graduate studies. Social science laboratory-based undergraduate research experiences (LUREs) offer similar benefits with more impact on the understanding of the research process and influence career direction. As online undergraduate programs increase, research opportunities must adapt to incorporate otherwise excluded remote students. This study employs an expert panel method that collects insights from 22 experienced lab leaders around meeting the substantial challenges of mentoring online students in social science lab groups. Through thematic analysis, four key challenges and proposed solutions to enable remote undergraduate students to successfully engage in research labs were identified. These solutions offer practical guidance to improve inclusivity and accessibility for online learners.more » « less
-
In response to the well-documented themes of unique challenges URM doctoral student experience (tokenism, stereotyping, microaggressions, etc.), faculty mentoring remains an especially critical resource to change the trajectory for URM students in graduate education. The purpose of this study is to examine the frst two years of change in institutional culture which will increase the number of URM doctoral students who pursue the STEM professoriate. The primary research question asked is “Can a focus on developing and mentoring faculty catalyze change in the culture and practices of their doctoral programs to increase faculty diversity?” Based on the idea that faculty are drivers of lasting institutional change, three diverse public universities collaborate to adapt and implement an institutional change project, called “AGEP-NC Alliance: A Change Model for Doctoral to Faculty Diversity in STEM,” that prioritizes cultural frameworks for deep change in postsecondary education (Gumpertz et al., 2019). Key model components include faculty learning communities; use of national faculty mentoring networks; and use of institutional diversity data. Culturally relevant mentoring is among several approaches of interest to STEM reformers to shift the focus to institutional-level change and not student defciencies. Operationalized as “cultural integrity,” the approach calls upon students’ racial and ethnic backgrounds as assets for reform in pedagogies and learning activities, while valuing those backgrounds as critical ingredients for acquiring academic capital and career success (Tierney, 1999). Kezar’s (2018) cultural framework for institutional change emphasizes knowledge formation in context as well as analysis of espoused meaning and values organizational members maintain. The researchers present the AGEP-NC Alliance as a narrative, rich case study and collaborative mentoring model, an approach allowing participant researchers to detail sustained data use in collaborative social interaction (Patton, 1990). Results will be shared that highlight faculty as cultural change agents, and organizational learning as a cultural process. Preliminary results show evidence of institutional change at several levels from classroom and laboratory practices to key departmental policies.more » « less
An official website of the United States government

