skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Drought‐Induced Decreases in Abundance of Emergent Midge Subsidies Are Offset by Increased Body Size in a Prairie Stream
ABSTRACT Emerging aquatic insects can be an important resource subsidy for a variety of terrestrial consumers, including spiders, birds, bats and lizards. Emergence flux is influenced by a variety of abiotic and biotic variables, such as temperature, drying, and predators and these variables can also control the body size of emergent insects. Despite their importance, these variables can change rapidly during drought conditions as water temperatures rise, surface area decreases and predator densities increase.During 2018, the Konza Prairie Biological Station experienced a record drought: flow ceased in the lower reaches of Kings Creek for the first time in over 40 years of observation, leaving a series of isolated pools. We studied how the drought affected aquatic insect emergence in 12 of these pools via elevated temperatures, decreased surface area, and concentration of predators (e.g. fishes and crayfish) over a four‐week period. We returned in 2020 and sampled emergence in the same pools over 2 weeks under non‐drought conditions to compare emergence between drought and non‐drought conditions.We found three overall patterns: (1) rates of areal emergence abundance and biomass (number or mg DM m−2d−1) did not differ between drought and non‐drought conditions. In contrast, pool‐scale emergence abundance, but not biomass (number or mg DM pool−1d−1), was lower during drought conditions; (2) average midge body size was larger during the drought relative to the non‐drought conditions; (3) environmental variables (e.g. temperature, pool surface area, predator biomass) were not predictive of emergence during drought and non‐drought conditions.Fewer, but larger emergent midges (as seen under drought conditions) may represent a higher quality resource for terrestrial consumers than many smaller midges due to increased per‐capita energy yield. However, due to the overall decrease in water availability throughout the stream network, the overall emergence flux was concentrated in reaches with remaining water during the drought, making pools emergence subsidy hotspots. Overall, these contrasting responses underscore the complex nature of community responses to shifting climatic conditions.  more » « less
Award ID(s):
2025849
PAR ID:
10638071
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Freshwater Biology
Volume:
70
Issue:
2
ISSN:
0046-5070
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Climate change is increasing the frequency, severity, and extent of wildfires and drought in many parts of the world, with numerous repercussions for the physical, chemical, and biological characteristics of streams. However, information on how these perturbations affect top predators and their impacts on lower trophic levels in streams is limited.The top aquatic predator in southern California streams is nativeOncorhynchus mykiss, the endangered southern California steelhead trout (trout). To examine relationships among the distribution of trout, environmental factors, and stream invertebrate resources and assemblages, we sampled pools in 25 stream reaches that differed in the presence (nine reaches) or absence (16 reaches) of trout over 12 years, including eight reaches where trout were extirpated during the study period by drought or post‐fire flood disturbances.Trout were present in deep pools with high water and habitat quality. Invertebrate communities in trout pools were dominated by a variety of medium‐sized collector–gatherer and shredder invertebrate taxa with non‐seasonal life cycles, whereas tadpoles and large, predatory invertebrates (Odonata, Coleoptera, Hemiptera [OCH]), often with atmospheric breather traits, were more abundant in troutless than trout pools.Structural equation modelling of the algal‐based food web indicated a trophic cascade from trout to predatory invertebrates to collector–gatherer taxa and weaker direct negative trout effects on grazers; however, both grazers and collector–gatherers also were positively related to macroalgal biomass. Structural equation modelling also suggested that bottom‐up interactions and abiotic factors drove the detritus‐based food web, with shredder abundance being positively related to leaf litter (coarse particulate organic matter) levels, which, in turn, were positively related to canopy cover and negatively related to flow. These results emphasise the context dependency of trout effects on prey communities and of the relative importance of top‐down versus bottom‐up interactions on food webs, contingent on environmental conditions (flow, light, nutrients, disturbances) and the abundances and traits of component taxa.Invertebrate assemblage structure changed from a trout to a troutless configuration within a year or two after trout were lost owing to post‐fire scouring flows or drought. Increases in OCH abundance after trout were lost were much more variable after drought than after fire. The reappearance of trout in one stream resulted in quick, severe reductions in OCH abundance.These results indicate that climate‐change induced disturbances can result in the extirpation of a top predator, with cascading repercussions for stream communities and food webs. This study also emphasises the importance of preserving or restoring refuge habitats, such as deep, shaded, perennial, cool stream pools with high habitat and water quality, to prevent the extirpation of sensitive species and preserve native biodiversity during a time of climate change. 
    more » « less
  2. Abstract Riverine floodplains serve as an important link between terrestrial and aquatic systems, as the rising and falling of water drive spatial food web subsidies that are critical to the functioning and stability of ecosystems. As these systems are increasingly impacted by hydrological alterations and climate change, it is important to understand how floodplain spatial food web subsidies may respond to changing environmental conditions.Here, we examine the interannual variation in the structure of a sunfish (Lepomisspp.) prey subsidy from freshwater marshes into the mangrove‐lined creeks of Rookery Branch in the Florida Coastal Everglades that occurs during seasonal dry downs. We evaluate how the structure of this subsidy relates to prior temperature and hydrological regimes based on a 16‐year electrofishing dataset. We also characterise the intra‐annual relationship between marsh water depths and sunfish migration patterns that underlie this subsidy.We found that interannual variation in the abundance and diversity of the sunfish prey subsidy was best explained by the minimum water temperature occurring within 90 days prior to peak abundance sampling periods, with lower minimum water temperatures associated with higher sunfish abundance and diversity. In contrast, interannual variations in the biomass of the sunfish prey subsidy were positively related to marsh flooding duration over 30 cm depth during the prior wet season. Intra‐annual models estimated peak sunfish abundance and biomass values in riverine habitats to occur during the transition between wet and dry periods when marsh depths are between 10 and 15 cm.Multivariate analysis of community abundance and biomass composition revealed that minimum water temperatures played an important role in structuring the prey subsidy, while the effect of flooding duration was weak. These results provide important insight into how floodplain prey subsidies may be altered under future climate and hydrological regimes and inform ecosystem‐based water management decisions. 
    more » « less
  3. Abstract The costs of foraging can be high while also carrying significant risks, especially for consumers feeding at the top of the food chain.To mitigate these risks, many predators supplement active hunting with scavenging and kleptoparasitic behaviours, in some cases specializing in these alternative modes of predation.The factors that drive differential utilization of these tactics from species to species are not well understood.Here, we use an energetics approach to investigate the survival advantages of hunting, scavenging and kleptoparasitism as a function of predator, prey and potential competitor body sizes for terrestrial mammalian carnivores.The results of our framework reveal that predator tactics become more diverse closer to starvation, while the deployment of scavenging and kleptoparasitism is strongly constrained by the ratio of predator to prey body size.Our model accurately predicts a behavioural transition away from hunting towards alternative modes of predation with increasing prey size for predators spanning an order of magnitude in body size, closely matching observational data across a range of species.We then show that this behavioural boundary follows an allometric power‐law scaling relationship where the predator size scales with an exponent nearing 3/4 with prey size, meaning that this behavioural switch occurs at relatively larger threshold prey body size for larger carnivores.We suggest that our approach may provide a holistic framework for guiding future observational efforts exploring the diverse array of predator foraging behaviours. 
    more » « less
  4. Abstract Hurricanes are major disturbances with important consequences to stream ecosystems as they create major floods and remove riparian vegetation. Understanding their impacts is a priority, as hurricane intensity is expected to increase due to global climate change.Mayfly assemblages in streams fill a diversity of ecological roles and functions. They are important consumers of algae by scraping benthic biofilms and detritivores associated with fine particles and leaf litter. Other taxa are filterers and even predators. Mayflies are also important prey items in aquatic and terrestrial food webs.Here, we assessed the effects of two consecutive hurricanes that impacted Puerto Rico in 2017 to understand how hurricane‐induced changes in the environment alter mayfly composition, secondary production and emergence.The study was conducted in the Luquillo Experimental Forest, Puerto Rico. Mayflies were sampled as nymphs and emerging adults for 6 months before and 17 months after hurricanes Irma and María hit the island in September 2017. Leaf litter inputs, canopy cover and chlorophyllaconcentrations were monitored along with mayflies.Mayfly assemblages were dominated by two genera of Leptophlebiidae before the hurricane,Neohagenulus (two species: N. julioTraver, 1938,N. luteolusTraver, 1938) andBorinquena (one species: B. carmencitaTraver, 1938). Both genera decreased in density after the hurricanes and were replaced with the BaetidaeCloeodes maculipesTraver, 1938 as the dominant taxon. This pattern was observed in both nymph and emerging adult densities.The secondary production of Leptophlebiidae species was highest before hurricane disturbance, with the BaetidaeC. maculipesshowing the opposite pattern.Neohagenulushad an annual production of 445 mg m−2 year−1,C. maculipesof 153 mg m−2 year−1andB. carmencitaof 68 mg m−2 year−1.Overall, the mayfly assemblages in our studied stream are vulnerable to hurricane disturbances. Expected increases in hurricane impacts might result in assemblage shifts that could change assemblage composition and alter energy flows within the ecosystem. 
    more » « less
  5. Structural overshoots, where biomass is overallocated to tree leaf area compared to sapwood area, could result in lethal stress during droughts. Climate change may alter climatic cues that drive leaf area production, such as temperature and precipitation, as well as seasonal dynamics that underlie summer rainfall due to the North American Monsoon (NAM). Combined, this could lead to temporal mismatches between leaf area‐driven water demand and availability, and increased drought‐induced mortality events.We used leaf area to sapwood area ratios to investigate the prevalence of overshoots and whether overshoots increase drought‐induced mortality. We measured populations of aspen spanning the northern transition zone of the NAM during and following severe droughts.We observed increased overshoots and drought‐induced mortality in southern latitude populations that rely more on summer monsoon rainfall. Changes in convective activity from low snowpack the preceding winter may be a climatic driver of heightened summer monsoon rainfall in the region and therefore may also trigger increased production of leaf area during wetter summers.Our results suggest that an overshoot of leaf area to sapwood area (AL:AS) ratios is associated with drought‐induced tree mortality and highlight that climate‐change driven alterations to the NAM could have major consequences for tree species' acclimation to environmental change. Read the freePlain Language Summaryfor this article on the Journal blog. 
    more » « less