skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on July 1, 2026

Title: The potential for albedo-induced climate mitigation using no-till management in midwestern U.S. croplands
Abstract No-till management is often recognized for its environmental and economic benefits, but its potential to reduce climate warming is still uncertain. Beyond ongoing debate over its effects on soil carbon storage, no-till also leaves plant residue on the surface, which can reflect more sunlight. This increase in surface reflectivity, called albedo, may help mitigate climate change by reducing the energy absorbed by the land. Here, we assessed this climate benefit of no-till across the U.S. Corn Belt using conservation survey records, county-level tillage data, and satellite observations. We found that no-till increased land surface brightness during the dormant season, reducing absorbed solar energy by an estimated 50 grams of CO2equivalent per square meter per year. Regionally, this could add up to 24 teragrams of CO2equivalent per year in potential climate benefits. Areas with low adoption, especially those with dark, carbon-rich soils, offer the greatest opportunity for further mitigation.  more » « less
Award ID(s):
2206086
PAR ID:
10638561
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Nature
Date Published:
Journal Name:
Communications Earth & Environment
Volume:
6
Issue:
1
ISSN:
2662-4435
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Bioenergy with carbon capture and storage (BECCS) has been proposed as a potential climate mitigation strategy raising concerns over trade‐offs with existing ecosystem services. We evaluate the feasibility of BECCS in the Upper Missouri River Basin (UMRB), a landscape with diverse land use, ownership, and bioenergy potential. We develop land‐use change scenarios and a switchgrass (Panicum virgatumL.) crop functional type to use in a land‐surface model to simulate second‐generation bioenergy production. By the end of this century, average annual switchgrass production over the UMRB ranges from 60 to 210 Tg dry mass/year and is dependent on the Representative Concentration Pathway for greenhouse gas emissions and on land‐use change assumptions. Under our simple phase‐in assumptions this results in a cumulative total production of 2,000–6,000 Tg C over the study period with the upper estimates only possible in the absence of climate change. Switchgrass yields decreased as average CO2concentrations and temperatures increased, suggesting the effect of elevated atmospheric CO2was small because of its C4 photosynthetic pathway. By the end of the 21st century, the potential energy stored annually in harvested switchgrass averaged between 1 and 4 EJ/year assuming perfect conversion efficiency, or an annual electrical generation capacity of 7,000–28,000 MW assuming current bioenergy efficiency rates. Trade‐offs between bioenergy and ecosystem services were identified, including cumulative direct losses of 1,000–2,600 Tg C stored in natural ecosystems from land‐use change by 2090. Total cumulative losses of ecosystem carbon stocks were higher than the potential ~300 Tg C in fossil fuel emissions from the single largest power plant in the region over the same time period, and equivalent to potential carbon removal from the atmosphere from using biofuels grown in the same region. Numerous trade‐offs from BECCS expansion in the UMRB must be balanced against the potential benefits of a carbon‐negative energy system. 
    more » « less
  2. Abstract Greenhouse gas (GHG) emissions reduction efforts are underway to mitigate climate change worldwide. Climate‐smart agriculture (CSA) practices have been shown to both increase soil organic carbon (SOC) inputs and reduce net greenhouse gas emissions (GHGnet). We evaluated the GHGnet of several management practices with three biogeochemical models (APSIM, Daycent, and RothC) at two sites with contrasting soils, climates, and cropping systems. Additionally, two future climate scenarios (baseline and high‐emissions) provided alternative outcomes of SOC, N2O, and CH4by 2050. In Michigan, most biochar and residue retention with no‐till treatments increased SOC stocks; leguminous cover crops, no‐till, and reducing fertilizer input lowered N2O emissions. The lowest biochar treatment lowered GHGnet in the baseline climate scenario, but all other management treatments increased GHGnet under both baseline and high emissions, and all management scenarios increased a mean of 8.0 Mg CO2‐equivalent GHG (CO2e) ha−1from baseline to high emissions. Conversely, in Texas, most treatments increased SOC, and N2O was relatively constant. Every no‐till treatment reversed GHGnet in both the baseline and high‐emissions climate scenarios but all management scenarios increased a mean of 0.6 Mg CO2e ha−1under high emissions. At both sites under high‐emissions climate change, cover crops and no‐till resulted in the lowest GHGnet overall. Overall, the study showed that no‐till, especially with residue retention, and cover crops are important CSA practices to lower the GHGnet of agriculture, but there remains much room to find even more effective solutions to adapt to climate change. 
    more » « less
  3. Abstract Bioenergy with carbon capture and geological storage (BECCS) is considered one of the top options for both offsetting CO2emissions and removing atmospheric CO2. BECCS requires using limited land resources efficiently while ensuring minimal adverse impacts on the delicate food‐energy‐water nexus. Perennial C4 biomass crops are productive on marginal land under low‐input conditions avoiding conflict with food and feed crops. The eastern half of the contiguous U.S. contains a large amount of marginal land, which is not economically viable for food production and liable to wind and water erosion under annual cultivation. However, this land is suitable for geological CO2storage and perennial crop growth. Given the climate variation across the region, three perennials are major contenders for planting. The yield potential and stability of Miscanthus, switchgrass, and energycane across the region were compared to select which would perform best under the recent (2000–2014) and future (2036–2050) climates. Miscanthus performed best in the Midwest, switchgrass in the Northeast and energycane in the Southeast. On average, Miscanthus yield decreased from present 19.1 t/ha to future 16.8 t/ha; switchgrass yield from 3.5 to 2.4 t/ha; and energycane yield increased from 14 to 15 t/ha. Future yield stability decreased in the region with higher predicted drought stress. Combined, these crops could produce 0.6–0.62 billion tonnes biomass per year for the present and future. Using the biomass for power generation with CCS would capture 703–726 million tonnes of atmospheric CO2per year, which would offset about 11% of current total U.S. emission. Further, this biomass approximates the net primary CO2productivity of two times the current baseline productivity of existing vegetation, suggesting a huge potential for BECCS. Beyond BECCS, C4 perennial grasses could also increase soil carbon and provide biomass for emerging industries developing replacements for non‐renewable products including plastics and building materials. 
    more » « less
  4. Abstract Groundwater irrigation of cropland is expanding worldwide with poorly known implications for climate change. This study compares experimental measurements of the net global warming impact of a rainfed versus a groundwater‐irrigated corn (maize)–soybean–wheat, no‐till cropping system in the Midwest US, the region that produces the majority of U.S. corn and soybean. Irrigation significantly increased soil organic carbon (C) storage in the upper 25 cm, but not by enough to make up for the CO2‐equivalent (CO2e) costs of fossil fuel power, soil emissions of nitrous oxide (N2O), and degassing of supersaturated CO2and N2O from the groundwater. A rainfed reference system had a net mitigating effect of −13.9 (±31) g CO2e m−2 year−1, but with irrigation at an average rate for the region, the irrigated system contributed to global warming with net greenhouse gas (GHG) emissions of 27.1 (±32) g CO2e m−2 year−1. Compared to the rainfed system, the irrigated system had 45% more GHG emissions and 7% more C sequestration. The irrigation‐associated increase in soil N2O and fossil fuel emissions contributed 18% and 9%, respectively, to the system's total emissions in an average irrigation year. Groundwater degassing of CO2and N2O are missing components of previous assessments of the GHG cost of groundwater irrigation; together they were 4% of the irrigated system's total emissions. The irrigated system's net impact normalized by crop yield (GHG intensity) was +0.04 (±0.006) kg CO2e kg−1yield, close to that of the rainfed system, which was −0.03 (±0.002) kg CO2e kg−1yield. Thus, the increased crop yield resulting from irrigation can ameliorate overall GHG emissions if intensification by irrigation prevents land conversion emissions elsewhere, although the expansion of irrigation risks depletion of local water resources. 
    more » « less
  5. Abstract Increased plant growth under elevated carbon dioxide (CO2) slows the pace of climate warming and underlies projections of terrestrial carbon (C) and climate dynamics. However, this important ecosystem service may be diminished by concurrent changes to vegetation carbon‐to‐nitrogen (C:N) ratios. Despite clear observational evidence of increasing foliar C:N under elevated CO2, our understanding of potential ecological consequences of foliar stoichiometric flexibility is incomplete. Here, we illustrate that when we incorporated CO2‐driven increases in foliar stoichiometry into the Community Land Model the projected land C sink decreased two‐fold by the end of the century compared to simulations with fixed foliar chemistry. Further, CO2‐driven increases in foliar C:N profoundly altered Earth's hydrologic cycle, reducing evapotranspiration and increasing runoff, and reduced belowground N cycling rates. These findings underscore the urgency of further research to examine both the direct and indirect effects of changing foliar stoichiometry on soil N cycling and plant productivity. 
    more » « less