ABSTRACT Extracting information from the total matter power spectrum with the precision needed for upcoming cosmological surveys requires unraveling the complex effects of galaxy formation processes on the distribution of matter. We investigate the impact of baryonic physics on matter clustering at z = 0 using a library of power spectra from the Cosmology and Astrophysics with MachinE Learning Simulations project, containing thousands of $$(25\, h^{-1}\, {\rm Mpc})^3$$ volume realizations with varying cosmology, initial random field, stellar and active galactic nucleus (AGN) feedback strength and subgrid model implementation methods. We show that baryonic physics affects matter clustering on scales $$k \gtrsim 0.4\, h\, \mathrm{Mpc}^{-1}$$ and the magnitude of this effect is dependent on the details of the galaxy formation implementation and variations of cosmological and astrophysical parameters. Increasing AGN feedback strength decreases halo baryon fractions and yields stronger suppression of power relative to N-body simulations, while stronger stellar feedback often results in weaker effects by suppressing black hole growth and therefore the impact of AGN feedback. We find a broad correlation between mean baryon fraction of massive haloes (M200c > 1013.5 M⊙) and suppression of matter clustering but with significant scatter compared to previous work owing to wider exploration of feedback parameters and cosmic variance effects. We show that a random forest regressor trained on the baryon content and abundance of haloes across the full mass range 1010 ≤ Mhalo/M⊙<1015 can predict the effect of galaxy formation on the matter power spectrum on scales k = 1.0–20.0 $$h\, \mathrm{Mpc}^{-1}$$.
more »
« less
Aemulus ν: precise predictions for matter and biased tracer power spectra in the presence of neutrinos
Abstract We present theAemulusνsimulations: a suite of 150 (1.05 h-1Gpc)3N-body simulations with a mass resolution of 3.51 × 1010Ωcb/0.3 h-1M⊙in awνCDM cosmological parameter space. The simulations have been explicitly designed to span a broad range inσ8to facilitate investigations of tension between large scale structure and cosmic microwave background cosmological probes. Neutrinos are treated as a second particle species to ensure accuracy to 0.5 eV, the maximum neutrino mass that we have simulated. By employing Zel'dovich control variates, we increase the effective volume of our simulations by factors of 10-105depending on the statistic in question. As a first application of these simulations, we build new hybrid effective field theory and matter power spectrum surrogate models, demonstrating that they achieve ≤ 1% accuracy fork≤ 1hMpc-1and 0 ≤z≤ 3, and ≤ 2% accuracy fork≤ 4hMpc-1for the matter power spectrum. We publicly release the trained surrogate models, and estimates of the surrogate model errors in the hope that they will be broadly applicable to a range of cosmological analyses for many years to come.
more »
« less
- Award ID(s):
- 2009291
- PAR ID:
- 10638791
- Publisher / Repository:
- IOP
- Date Published:
- Journal Name:
- Journal of Cosmology and Astroparticle Physics
- Volume:
- 2023
- Issue:
- 07
- ISSN:
- 1475-7516
- Page Range / eLocation ID:
- 054
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We present updated constraints on the cosmological 3D power spectrum of carbon monoxide CO(1–0) emission in the redshift range 2.4–3.4. The constraints are derived from the two first seasons of Carbon monOxide Mapping Array Project (COMAP) Pathfinder line intensity mapping observations aiming to trace star formation during the epoch of galaxy assembly. These results improve on the previous Early Science results through both increased data volume and an improved data processing methodology. On the methodological side, we now perform cross-correlations between groups of detectors (“feed groups”), as opposed to cross-correlations between single feeds, and this new feed group pseudo power spectrum (FGPXS) is constructed to be more robust against systematic effects. In terms of data volume, the effective mapping speed is significantly increased due to an improved observational strategy as well as a better data selection methodology. The updated spherically and field-averaged FGPXS,C~(k), is consistent with zero, at a probability-to-exceed of around 34%, with an excess of 2.7σin the most sensitive bin. Our power spectrum estimate is about an order of magnitude more sensitive in our six deepest bins across 0.09 Mpc−1<k< 0.73 Mpc−1, compared to the feed-feed pseudo power spectrum (FPXS) of COMAP ES. Each of these bins individually constrains the CO power spectrum tok PCO(k) < 2400–4900 μK2Mpc2at 95% confidence. To monitor potential contamination from residual systematic effects, we analyzed a set of 312 difference-map null tests and found that these are consistent with the instrumental noise prediction. In sum, these results provide the strongest direct constraints on the cosmological 3D CO(1–0) power spectrum published to date.more » « less
-
Abstract We present new cosmological parameter constraints from the eBOSS Lyman-α forest survey. We use a new theoretical model and likelihood based on the PRIYA simulation suite. PRIYA is the first suite to resolve the Lyman-αforest in a (120 Mpc/h)3volume, using a multi-fidelity emulation technique. We use PRIYA to predict Lyman-αforest observables with ≲ 1% interpolation error over an 11 dimensional (9 simulated, 2 in post-processing) parameter space. We identify an internal tension within the flux power spectrum data. Once the discrepant data is removed, we find the primeval scalar spectral index measured at a pivot scale ofk0= 0.78 Mpc-1to benP= 1.009+0.027-0.018at 68% confidence. This measurement from the Lyman-αforest flux power spectrum alone is in reasonable agreement with Planck, and in tension with earlier eBOSS analyses. The amplitude of matter fluctuations isσ8= 0.733+0.026-0.029at 68% confidence, in agreement with Dark Energy Survey weak lensing measurements and other small-scale structure probes and in tension with CMB measurements from Planck and ACT. The effective optical depth to Lyman-α photons from our pipeline is in good agreement with earlier high resolution measurements. We find a linear power atz= 3 andk= 0.009 s/km of Δ2L= 0.302+0.024-0.027with a slopeneff= -2.264+0.026-0.018. Our flux power spectrum only chains prefer a low level of heating during helium reionization. When we add IGM temperature data we findnP= 0.983 ± 0.020 andσ8= 0.703+0.023-0.027. Our chains prefer an early and long helium reionization event, as suggested by measurements from the helium Lyman-αforest. In the near future we will use our pipeline to infer cosmological parameters from the DESI Lyman-α data.more » « less
-
Abstract We explore an interacting dark matter (IDM) model that allows for a fraction of dark matter (DM) to undergo velocity-independent scattering with baryons. In this scenario, structure on small scales is suppressed relative to the cold DM scenario. Using the effective field theory of large-scale structure, we perform the first systematic analysis of BOSS full-shape galaxy clustering data for the IDM scenario, and we find that this model ameliorates theS8tension between large-scale structure and Planck data. Adding theS8prior from the Dark Energy Survey (DES) to our analysis further leads to a mild ∼3σpreference for a nonvanishing DM–baryon scattering cross section, assuming ∼10% of DM is interacting and has a particle mass of 1 MeV. This result produces a modest ∼20% suppression of the linear power atk≲ 1hMpc−1, consistent with other small-scale structure observations. Similar scale-dependent power suppression was previously shown to have the potential to resolveS8tension between cosmological data sets. The validity of the specific IDM model explored here will be critically tested with upcoming galaxy surveys at the interaction level needed to alleviate theS8tension.more » « less
-
ABSTRACT We introduce MF-Box, an extended version of MFEmulator, designed as a fast surrogate for power spectra, trained using N-body simulation suites from various box sizes and particle loads. To demonstrate MF-Box’s effectiveness, we design simulation suites that include low-fidelity (LF) suites (L1 and L2) at 256 and $$100 \, \rm {Mpc\, ~}h^{-1}$$, each with 1283 particles, and a high-fidelity (HF) suite with 5123 particles at $$256 \, \rm {Mpc\, ~}h^{-1}$$, representing a higher particle load compared to the LF suites. MF-Box acts as a probabilistic resolution correction function, learning most of the cosmological dependencies from L1 and L2 simulations and rectifying resolution differences with just three HF simulations using a Gaussian process. MF-Box successfully emulates power spectra from our HF testing set with a relative error of $$\lt 3~{{\ \rm per\ cent}}$$ up to $$k \simeq 7 \, h\rm {Mpc}{^{-1}}$$ at z ∈ [0, 3], while maintaining a cost similar to our previous multifidelity approach, which was accurate only up to z = 1. The addition of an extra LF node in a smaller box significantly improves emulation accuracy for MF-Box at $$k \gt 2 \, h\rm {Mpc}{^{-1}}$$, increasing it by a factor of 10. We conduct an error analysis of MF-Box based on computational budget, providing guidance for optimizing budget allocation per fidelity node. Our proposed MF-Box enables future surveys to efficiently combine simulation suites of varying quality, effectively expanding the range of emulation capabilities while ensuring cost efficiency.more » « less
An official website of the United States government

