skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 1, 2026

Title: Towards AI-Enhanced Classroom Response System Eliciting Self-Explanations in Computer Science Courses
This study investigates the implementation of a classroom response system in STEM education in a higher education context. The study used ExplainIt, a web-based classroom response system designed to support students’ self-explanations and provide instant feedback. Data were collected from 32 undergraduate students using four instruments including demographic information, self-efficacy, engagement, and system evaluation. The results showed that students reported positive learning experiences, demonstrated increased self-efficacy in STEM content, and indicated high levels of engagement following their use of ExplainIt.  more » « less
Award ID(s):
2111473 2111216
PAR ID:
10638837
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
The Association for Educational Communications and Technology (AECT)
Date Published:
Journal Name:
The Journal of Applied Instructional Design
Volume:
14
Issue:
2
ISSN:
2160-5289
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In STEM learning focused on science literacy, socioscientific issues instruction is often proposed as a way to bolster students’ civic engagement, however few studies in science education have explicitly examined this connection. We define civic engagement as the work of influencing legitimately public matters using means within the existing political structure. In this work we investigate students’ feelings of self-efficacy for this type of civic engagement in the context of four socioscientific issues (prairie dog conservation, food insecurity, biofuels and water conservation). This study was in the context of a large enrollment introductory science college course, where students used a structured decision-making process to examine alternative policy solutions to complex socioscientific issues. We qualitatively examined students’ response about their perception of the importance of the issue, their self-efficacy in exploring actions they could take to impact the issue, and the effectiveness of those actions. We found that students’ ideas about impact and effectiveness varied across the four different issues contexts due to students’ sense of the issues’ importance and scale. Generally, students’ ideas about actions they could take to impact the issue were narrow and rarely included political actions like voting. We also found post instruction increases in students’ civic engagement attitudes and skills related to social justice, interpersonal and problem-solving skills and political awareness. Finally, we suggest that socioscientific instruction must have an explicit connection to policy-level decisions and reveal how individual actions can influence the societal system. Our course using a structured decision-making process in the context of socioscientific issues is one model to help students make these connections. 
    more » « less
  2. The role of cognitive engagement in promoting deep learning is well established. This deep learning fosters attributes of success such as self-efficacy, motivation and persistence. However, the traditional chalk-and-talk teaching and learning environment is not conducive to engage students cognitively. The biggest impediment to implementing an environment for deep learning such as active-learning is the limited duration of a typical class period most of which is consumed by lecturing. In this paper, best practices and strategies for cognitive engagement of students in the classroom are discussed. Several lower level math and aerospace engineering courses were redesigned and offered during the academic year at a historically black university. The learning strategies in these redesigned courses included the “flipped” pedagogical model which allowed the integration of the active-learning strategy in the classroom. The research study is to determine the impact of these redesigned courses on student academic performance and persistence in STEM courses. The efficacy of the design of the flipped approach was also investigated. A between-group quasi-experimental research design was used for comparing student academic performance in traditional classroom (control group) and redesigned classroom (intervention group). A within-subject, repeated measures design was also used to assess the impact on the students’ self-regulated learning. A validated instrument was used to measure the effect of the redesigned learning environment on the motivational beliefs and self-regulated learning. Data on the academic performance of the students were collected. Analyses of these data indicated a significant impact on student academic performance. A positive change in student motivation and self-regulated learning was observed. Data analysis also validated the design of the intervention. This research is supported by NSF Grant# 1712156. 
    more » « less
  3. Abstract BackgroundTeacher turnover is a dire and chronic problem for many education systems across the globe. According to UNESCO, 70% of teachers will be replaced by 2030. This study investigates the relationship between the retention of science and mathematics teachers and factors related to human, social, structural, and positive psychological capital—a four-capital teacher retention model. More specifically, this study explores how teaching self-efficacy, leadership engagement, teacher-school fit, diversity beliefs, community connections, and professional social network characteristics (e.g., size, bridging, proximity, reach) relate to teacher retention. Additionally, potential differences in retention and the aforementioned factors related to the four-capital model between Master Teaching Fellows (MTFs) and their peers (non-MTFs) with similar human capital (demographics and experience) are explored in this study. Participants were K-12 science and mathematics teachers (85 MTFs and 82 non-MTFs) from six different regions across the U.S. MTFs participated in one of seven long-term (5–6 years) Robert Noyce Master Teaching Fellowship Programs funded by the National Science Foundation. ResultsLeadership engagement was positively associated with shifting (from teaching to a formal leadership position). Teacher-school fit was negatively associated with leaving. For secondary teachers, teaching self-efficacy was positively associated with shifting to a leadership position. Leadership network size, bridging, and geographic proximity variables were positively related to shifting when compared to staying as classroom teachers. Teaching network bridging and leadership network bridging were positively related to leavers when compared to stayers. MTF shifters were likely to shift earlier in their careers than non-MTFs. Lastly, MTFs had higher self-efficacy, geographically larger teaching networks and leadership networks, and more contacts and bridging roles in their leadership networks than non-MTFs. ConclusionFindings provide support for teacher leadership programs in promoting leadership roles and responsibilities for STEM teachers and retaining teachers in STEM education either in the classroom or in administrative roles. These findings suggest that school administrators may also play a key role in encouraging teachers to engage in leadership activities and have a broader impact on public education by, for example, adopting a hybrid model of leadership roles that involves classroom teaching. 
    more » « less
  4. Abstract The intricate interdependence of food, energy, and water (FEW) systems necessitates effective and coordinated educational efforts across various contexts to equip students with the skills to tackle FEW challenges. As an emerging interdisciplinary field, understanding educators’ and education researchers’ views on the FEW-Nexus perspective, self-efficacy, needs, and approaches to promoting community engagement are vital to facilitating the growth of this field. The National Collaborative for Research on Food, Energy, and Water Education (NC-FEW) is an NSF-funded, emergent, interdisciplinary community of educators and discipline-based education researchers engaged in sustained network and capacity building around FEW-Nexus. We present initial survey findings from 166 NC-FEW members, predominantly postsecondary faculty from varied disciplines. Our goal was to understand their views of FEW-Nexus perspective, self-efficacy in FEW-Nexus-specific teaching and education research, instructional design, and community engagement. The findings suggest that FEW-Nexus educators in the NC-FEW community view the Nexus as a blend of diverse concepts and themes, emphasizing the necessity of establishing a concrete definition of the nexus perspective. Their self-efficacy levels were higher in general STEM teaching (mean = 4.03) and STEM education research (mean = 3.61) compared to FEW-Nexus-specific teaching (mean = 3.43) and education research (mean = 3.18). Respondents reported feeling moderately connected to the FEW-Nexus educator community (mean = 2.21). They also outlined anticipated community benefits and contributions to promoting teaching and learning in the FEW-Nexus. These findings highlight the significance of boosting FEW-Nexus educators’ self-efficacy and building a stronger sense of community, having important implications for professional development in emerging fields and broader educational reform endeavors. 
    more » « less
  5. In STEM education, fewer female students participate in STEM related activities than males (Kim, ND; Sahin et al., 2015). This underrepresentation of females in STEM fields may be attributed to lack of confidence in STEM related to their self-concept, gender stereotyping, or lack of cultural/family support (Cokley, 2002). This study is part of an NSF program that focuses on engaging secondary female students in a constructive learning environment (CLE) to enhance their self confidence in STEM related fields and encourage interest in STEM learning in order to increase females in STEM workforce. The purpose of this proposal is two-fold: 1) to examine the CLE, and 2) to investigate the factors that influence female students’ self-confidence in STEM within a CLE. Using both quantitative and qualitative data sources, this study addresses the following research questions: (1) What is the relationship between a CLE and STEM self-efficacy?; (2) How does students’ sense of belonging impact the relationship between CLE and STEM self-efficacy; and (3) How does the project experience impact secondary female students’ attitudes toward participation in STEM learning? 
    more » « less