skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Yucatan Hurricane Activity Highlights Common Era Tropical Cyclone Dipole
Abstract Tropical cyclone (TC) impacts along the western Atlantic and Caribbean margin are not spatially uniform. Proxy based reconstructions of Common Era TC activity highlight this non‐uniform distribution at centennial‐millennial timescales. However, the sparse geographic scope of these reconstructions impedes our assessment of TC landfalls across broader spatial domains. This work presents a compilation of new and existing TC reconstructions from the Yucatan Peninsula for comparison with a contemporaneous compilation from New England, showing that these regions occupy distal nodes of a low‐frequency TC dipole. Increased Yucatan (New England) storminess is closely linked to intervals of Northern Hemisphere warming (cooling) and the expansion (contraction) of the Intertropical Convergence Zone, suggesting that secular shifts in the mean climate state mediate dipole orientation.  more » « less
Award ID(s):
1854980
PAR ID:
10638844
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
American Geophysical Union
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
52
Issue:
18
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Proxy‐based reconstructions of long‐term Atlantic tropical cyclone (TC) variability reveal low‐frequency oscillations in regional TC landfalls over the Common Era. However, the limited spatial coverage and increased uncertainty of the proxy records complicates assessments of this feature. Here we present a new multi‐ensemble set of synthetic TCs downscaled from the Last Millennium Reanalysis project, which is based on sea surface temperatures that more accurately reflect past conditions. Throughout ensemble members, there are coherent multi‐centennial shifts in landfalls with persistent intervals of increased (decreased) occurrence along the eastern US concurrent with inverse activity in the southwest Caribbean and Gulf of Mexico, associated with basin‐scale redistributions of storm tracks. The emergent TC‐dipole from modeled climate provides context and support for its presence within proxy‐reconstructions. Furthermore, dipole recurrence across ensembles demonstrates that it arises from sea surface temperature‐informed climate processes. However, timing differences between ensembles indicate that transient atmospheric variability influences dipole position. 
    more » « less
  2. Tropical cyclone (TC) models indicate that continued planet warming will likely increase the global proportion of powerful TCs (specifically Categories 4 and 5 hurricanes), increasingly jeopardizing low-lying coastal communities and resources such as the Pelican Cays, Belize. The combination of increased coastal development and continued relative sea-level rise puts these communities at even higher risk of damage from TCs. The short TC observational record for the western Caribbean hampers the extensive study of TC activity on centennial timescales, which hinders our ability to fully understand past TC climatology and improve the accuracy of TC models. To better assess TC risk, paleotempestological studies are necessary to put future scenarios in perspective. Here, we present a high-resolution reconstruction of coarser-grained sediment deposits associated with TC (predominately ≥ Category 2 hurricanes) passages over the past 1200 years from Elbow and Lagoon Cays, two coral reef-bounded lagoons at the northern and southern end of the Pelican Cays; the most southern Belizean paleotempestological site to date. Coincident timing of historic storms with statistically significant coarser-grained deposits within cay lagoon sediment cores allows us to determine which historic TCs likely generated event layers (tempestites) archived in the sediment record. Our compilation frequency analysis indicates one active interval (above-normal TC activity) from 1740-1950 CE and one quiet interval (below-normal TC activity) from 850-1018 CE. The active and quiet intervals in the Pelican Cays composite record are anticorrelated with those from nearby and re-analyzed TC records to the north, including the Great Blue Hole (∼100 km north) and the Northeast Yucatan (∼380 km northwest). This site-specific anticorrelation in TC activity along the western Caribbean indicates that we cannot rely on any one single TC record to represent regional TC activity. However, we cannot discount that these anticorrelated periods between the western Caribbean sites are due to randomness. To confirm that the anticorrelation in TC activity among sites from the western Caribbean is indeed a function of climate change and not randomness, an integration of more records and TC model simulations over the past millennium is necessary to assess the significance of centennial-scale variability in TC activity recorded in reconstructions from the western Caribbean. 
    more » « less
  3. Abstract Theoretical models of the potential intensity of tropical cyclones (TCs) suggest that TC rainfall rates should increase in a warmer environment but limited observational evidence has been studied to test these hypotheses on a global scale. The present study explores the general trends of TC rainfall rates based on a 19-year (1998–2016) time series of continuous observational data collected by the Tropical Rainfall Measuring Mission and the Global Precipitation Measurement mission. Overall, observations exhibit an increasing trend in the average TC rainfall rate of about 1.3% per year, a fact that is contributed mainly by the combined effect of the reduction in the inner-core rainfall rate with the increase in rainfall rate on the rainband region. We found that the increasing trend is more pronounced in the Northwestern Pacific and North Atlantic than in other global basins, and it is relatively uniform for all TC intensities. Further analysis shows that these trends are associated with increases in sea surface temperature and total precipitable water in the TC environment. 
    more » « less
  4. Coastal communities are vulnerable to sea-level rise and hurricane-induced flooding. Our ability to assess flooding risk at coastal locations is restricted by the short observational record and limited knowledge on storm surge generation during hurricanes of different strength, size and orientation. Here, we present a transect of sediment cores collected from a blue hole near Middle Caicos in the Turks & Caicos Islands. Storm deposits found across cores in the transect record the passage of hurricanes passing to the south of Middle Caicos over the past 1500 years including Hurricane Irma in 2017. The record indicates historically unprecedented multi-decadal periods of elevated storm strikes on the island. We add this new reconstruction to a compilation of near-annually resolved paleohurricane records of the past millennium in The Bahamas. This compilation indicates increased storm activity in The Bahamas from 650 to 800 CE, 930 to 1040 CE, and 1400 to 1800 CE. Taken together with compilations of published paleohurricane records from New England and the Gulf Coast of Florida, we observe periods of elevated hurricane activity in all three spatially disparate regions over the past millennium and periods when New England and the Bahama Archipelago are active while the Gulf Coast of Florida is not. We argue that both regional-scale changes in vertical wind shear patterns and shifting storm tracks may explain the discrepancies we observe between different regions of the North Atlantic. This research informs how hurricane frequency has changed over the past 1500 years specifically in the Turks & Caicos Islands and regionally along the Bahama Archipelago. 
    more » « less
  5. Abstract We present the largest optical photometry compilation of Gamma-Ray Bursts (GRBs) with redshifts (z). We include 64813 observations of 535 events (including upper limits) from 28 February 1997 to 18 August 2023. We also present a user-friendly web tool grbLC which allows users to visualise photometry, coordinates, redshift, host galaxy extinction, and spectral indices for each event in our database. Furthermore, we have added a Gamma-ray Coordinate Network (GCN) scraper that can be used to collect data by gathering magnitudes from the GCNs. The web tool also includes a package for uniformly investigating colour evolution. We compute the optical spectral indices for 138 GRBs, for which we have at least 4 filters at the same epoch in our sample, and craft a procedure to distinguish between GRBs with and without colour evolution. By providing a uniform format and repository for the optical catalogue, this web-based archive is the first step towards unifying several community efforts to gather the photometric information for all GRBs with known redshifts. This catalogue will enable population studies by providing light curves (LCs) with better coverage since we have gathered data from different ground-based locations. Consequently, these LCs can be used to train future LC reconstructions for an extended inference of the redshift. The data gathering also allows us to fill some of the orbital gaps from Swift in crucial points of the LCs, e.g., at the end of the plateau emission or where a jet break is identified. 
    more » « less