skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 25, 2026

Title: Assessing the Evolutionary Trajectory of Arbuscular Mycorrhizal Conserved Genes in Seagrasses and Aquatic Close Relatives
Summary Arbuscular mycorrhizal fungi (AMF) form beneficial associations with plants, and are thought to have been critical to the adaptation of the ancestor of terrestrial plants during the transition onto land. However, the ability of AMF to associate with aquatic plants is unclear. To address this, we used 65 publicly available genomes and transcriptomes (25 freshwater, 23 terrestrial and 17 marine plants) to interrogate the genomic potential to form AMF associations in aquatic plant lineages in the order Alismatales. We explored the presence or absence of homologs of 45 genes, with a a special focus on six critical genes including three that co-evolved with AMF associations (RAD1, STR1, STR2) and three necessary for intracellular symbiosis (SymRK, CCaMK/DMI3, CYCLOPS/IDP3). Our results indicate a pattern likely consistent with independent gene losses (or extreme divergence) of symbiosis genes across aquatic lineages suggesting a possible inability to form AMF associations. However, some of these conserved genes (i.e.,CCaMK/DMI3) are purported to function in other types of fungal symbioses, such as ectomycorrhizal symbiosis, and were observed here in a subset of aquatic lineages, including seagrasses. Overall, our findings highlight the complex evolutionary trajectories of symbiosis-related genes in aquatic plants, suggesting that while AMF associations may have been lost in certain lineages, others have genes that may allow them to form alternative fungal symbioses which may still play an underappreciated role in their ecology.  more » « less
Award ID(s):
2205744
PAR ID:
10639798
Author(s) / Creator(s):
; ;
Publisher / Repository:
bioRxiv
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Arbuscular mycorrhizal fungi (AMF) are widespread obligate symbionts of plants. This dynamic symbiosis plays a large role in successful plant performance, given that AMF help to ameliorate plant responses to abiotic and biotic stressors. Although the importance of this symbiosis is clear, less is known about what may be driving this symbiosis, the plant's need for nutrients or the excess of plant photosynthate being transferred to the AMF, information critical to assess the functionality of this relationship. Characterizing the AMF community along a natural plant productivity gradient is a first step in understanding how this symbiosis may vary across the landscape. We surveyed the AMF community diversity at 12 sites along a plant productivity gradient driven by soil nitrogen availability. We found that AMF diversity in soil environmental DNA significantly increased along with the growth of the host plantsAcerrubrumandA. saccharum., a widespread tree genus. These increases also coincided with a natural soil inorganic N availability gradient. We hypothesize photosynthate from the increased tree growth is being allocated to the belowground AMF community, leading to an increase in diversity. These findings contribute to understanding this complex symbiosis through the lens of AMF turnover and suggest that a more diverse AMF community is associated with increased host–plant performance. 
    more » « less
  2. Two symbiotic processes, nodulation and arbuscular mycorrhiza, are primarily controlled by the plant’s need for nitrogen (N) and phosphorus (P), respectively. Autoregulation of nodulation (AON) and autoregulation of mycorrhizal symbiosis (AOM) both negatively regulate their respective processes and share multiple components—plants that make too many nodules usually have higher arbuscular mycorrhiza (AM) fungal root colonization. The protein TML (TOO MUCH LOVE) was shown to function in roots to maintain susceptibly to rhizobial infection under low N conditions and control nodule number through AON inLotus japonicus.Medicago truncatulahas two sequence homologs:MtTML1 andMtTML2. We report the generation of stable single and double mutants harboring multiple allelic variations inMtTML1andMtTML2using CRISPR–Cas9 targeted mutagenesis and screening of a transposon mutagenesis library. Plants containing single mutations inMtTML1 orMtTML2 produced two to three times the nodules of wild-type plants, whereas plants containing mutations in both genes displayed a synergistic effect, forming 20× more nodules compared to wild-type plants. Examination of expression and heterozygote effects suggests that genetic compensation may play a role in the observed synergy. Plants with mutations in bothTMLs only showed mild increases in AM fungal root colonization at later timepoints in our experiments, suggesting that these genes may also play a minor role in AM symbiosis regulation. The mutants created will be useful tools to dissect the mechanism of synergistic action ofMtTML1 andMtTML2 inM. truncatulasymbiosis with beneficial microbes. 
    more » « less
  3. Abstract The presence of Arbuscular Mycorrhizal Fungi (AMF) in vascular land plant roots is one of the most ancient of symbioses supporting nitrogen and phosphorus exchange for photosynthetically derived carbon. Here we provide a multi-scale modeling approach to predict AMF colonization of a worldwide crop from a Recombinant Inbred Line (RIL) population derived fromSorghum bicolorandS. propinquum. The high-throughput phenotyping methods of fungal structures here rely on a Mask Region-based Convolutional Neural Network (Mask R-CNN) in computer vision for pixel-wise fungal structure segmentations and mixed linear models to explore the relations of AMF colonization, root niche, and fungal structure allocation. Models proposed capture over 95% of the variation in AMF colonization as a function of root niche and relative abundance of fungal structures in each plant. Arbuscule allocation is a significant predictor of AMF colonization among sibling plants. Arbuscules and extraradical hyphae implicated in nutrient exchange predict highest AMF colonization in the top root section. Our work demonstrates that deep learning can be used by the community for the high-throughput phenotyping of AMF in plant roots. Mixed linear modeling provides a framework for testing hypotheses about AMF colonization phenotypes as a function of root niche and fungal structure allocations. 
    more » « less
  4. ABSTRACT The plant–mycorrhizal fungi relationship can range from mutualistic to parasitic as a function of the fungal taxa involved, plant ontogeny, as well as the availability of resources. Despite the implications this relationship may have on forest carbon cycling and storage, we know little about how mature trees may be impacted by mycorrhizae and how this impact may vary across the landscape. We collected growth data of two arbuscular mycorrhizal fungi (AMF)‐associated tree species,Acer rubrumandA. saccharum, and one ectomycorrhizal fungi (EMF)‐associated tree species,Quercus rubra, to assess how the mycorrhizal fungi–plant association may vary along a gradient of nitrogen (N) availability. Individual assessments of fungal taxa relative abundances showed non‐linear associations with tree growth; positive associations for the two AMF‐associated trees were mostly under low N, whereas positive to neutral associations for the EMF‐associated tree mainly took place at high N. OnlyA. rubrumexhibited greater tree growth with its tree soil‐specific mycorrhizal community when compared with predictions under a random mycorrhizal soil community. Because mycorrhizal fungi are likely to mediate how plants respond to warming, increasing levels of N deposition and of atmospheric CO2, understanding these relationships is critical to accurately forecasting tree growth. 
    more » « less
  5. Abstract Arbuscular mycorrhizal symbiosis (AM) is a beneficial trait originating with the first land plants, which has subsequently been lost by species scattered throughout the radiation of plant diversity to the present day, including the modelArabidopsis thaliana. To explore if elements of this apparently beneficial trait are still present and could be reactivated we generatedArabidopsisplants expressing a constitutively active form ofInteracting Protein of DMI3, a key transcription factor that enables AM within the Common Symbiosis Pathway, which was lost fromArabidopsisalong with the AM host trait. We characterize the transcriptomic effect of expressingIPD3inArabidopsiswith and without exposure to the AM fungus (AMF)Rhizophagus irregularis, and compare these results to the AM modelLotus japonicusand itsipd3knockout mutantcyclops-4. Despite its long history as a non-AM species, restoringIPD3in the form of its constitutively active DNA-binding domain toArabidopsisaltered expression of specific gene networks. Surprisingly, the effect of expressingIPD3inArabidopsisand knocking it out inLotuswas strongest in plants not exposed to AMF, which is revealed to be due to changes inIPD3genotype causing a transcriptional state, which partially mimics AMF exposure in non-inoculated plants. Our results indicate that molecular connections to symbiosis machinery remain in place in this nonAM species, with implications for both basic science and the prospect of engineering this trait for agriculture. 
    more » « less