Growth of GeSn films directly on Si substrates is desirable for integrated photonics applications since the absence of an intervening buffer layer simplifies device fabrication. Here, we analyze the microstructure of two GeSn films grown directly on (001) Si by remote plasma-enhanced chemical vapor deposition (RPECVD): a 1000 nm thick film containing 3% Sn and a 600 nm thick, 10% Sn film. Both samples consist of an epitaxial layer with nano twins below a composite layer containing nanocrystalline and amorphous. The epilayer has uniform composition, while the nanocrystalline material has higher levels of Sn than the surrounding amorphous matrix. These two layers are separated by an interface with a distinct, hilly morphology. The transition between the two layers is facilitated by formation of densely populated (111)-coupled nano twins. The 10% Sn sample exhibits a significantly thinner epilayer than the one with 3% Sn. The in-plane lattice mismatch between GeSn and Si induces a quasi-periodic misfit dislocation network along the interface. Film growth initiates at the interface through formation of an atomic-scale interlayer with reduced Sn content, followed by the higher Sn content epitaxial layer. A corrugated surface containing a high density of twins with elevated levels of Sn at the peaks begins forming at a critical thickness. Subsequent epitaxial breakdown at the peaks produces a composite containing high levels of Sn nanocrystalline embedded in lower level of Sn amorphous. The observed microstructure and film evolution provide valuable insight into the growth mechanism that can be used to tune the RPECVD process for improved film quality.
more »
« less
This content will become publicly available on April 30, 2026
Ion‐Implantation, Epilayer Growth, and Lift‐Off of High‐Quality Diamond Films
Abstract The development of high‐quality diamond films is pivotal for driving advances in quantum technology, power electronics, and thermal management. The ion implantation and lift‐off technique has emerged as a crucial method for fabricating diamond films with controlled thickness and scalable production of large‐area diamond wafers. This study advances the understanding of critical interface dynamics during diamond epilayer growth on ion‐implanted commercial diamond substrates. Leveraging high‐resolution cross‐sectional electron microscopy and spectroscopic analyses, the direct transformation of the damaged diamond layer is revealed into a graphitic layer during epilayer overgrowth, eliminating the need for high‐temperature annealing. Raman and photoluminescence spectroscopy mappings along the side section highlight the exceptional quality and purity of the epilayer, showcasing nitrogen‐vacancy center densities comparable to electronic‐grade diamond, making it highly suitable for quantum and electronic applications. Finally, the epilayer detaches efficiently via electrochemical etching, leaving a substrate with low surface roughness that is reusable for multiple growth cycles. These results provide valuable insights into refining the ion implantation and lift‐off process, bridging critical gaps in interface evolution, and establishing a foundation for sustainable, high‐performance diamond films across diverse technological applications.
more »
« less
- PAR ID:
- 10640252
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Functional Materials
- ISSN:
- 1616-301X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Nucleation is important in processing of good quality diamond crystals and textured thin films by microwave plasma enhanced chemical vapor deposition (MPECVD) for applications in quantum devices and systems. Bias-enhanced nucleation (BEN) is one approach for diamond nucleation in situ during MPECVD. However, the mechanism of diamond nucleation by BEN is not well understood. This paper describes results on the nucleation of diamond within a carbon film upon application of electric field during the BEN-facilitated MPECVD process. The nature of the diamond film and nuclei formed is characterized by SEM (scanning electron microscopy), Raman spectroscopy, and high-resolution transmission electron microscopy (HRTEM). The HRTEM images and associated diffraction patterns of the nucleation layer show that the diamond nuclei are formed within the carbon film close to the Si (100) substrate surface under the influence of microwaves and electric fields that lead to formation of the textured diamond film and crystal upon further growth. These results are expected to develop diamond films of optimum quality containing a nitrogen-vacancy center for application in quantum systems.more » « less
-
Various reports on phosphorus‐doped diamond growth present a prominent variation in the doping profile and the doping gradient at the substrate/epilayer interface. This warrants a closer investigation of the growth process, in particular, the gas chemistry via residual gas analysis (RGA) to determine whether a doping indicator exists that would allow a real‐time control of the phosphorus incorporation. Phosphorus‐doped diamond films are prepared by plasma‐enhanced chemical vapor deposition utilizing a 200 ppm trimethylphosphine in hydrogen gas mixture. The phosphorus‐doped diamond growth is characterized by in situ RGA, which identifies a diatomic radical (PH) formed in the hydrogen plasma. A rapid analysis response is achieved through an engineered differentially pumped component. Secondary ion mass spectroscopy (SIMS) is employed to evaluate the phosphorus incorporation in the doped diamond epilayers. The SIMS‐derived phosphorus doping profile is correlated to the RGA‐measured PH concentration. For an epilayer grown on a (111) chemical vapor deposition‐type IIa substrate with moderate miscut a significant phosphorus incorporation of 4.5 × 1019 cm−3is measured with an incorporation efficiency of about 10%. A doping model is derived that utilizes RGA for dominant growth and doping species and under consideration of various growth modes.more » « less
-
We report on the growth of Si-doped homoepitaxial β-Ga2O3 thin films on (010) Ga2O3 substrates via metal-organic chemical vapor deposition (MOCVD) utilizing triethylgallium (TEGa) and trimethylgallium (TMGa) precursors. The epitaxial growth achieved an impressive 9.5 μm thickness at 3 μm/h using TMGa, a significant advance in material growth for electronic device fabrication. This paper systematically studies the Schottky barrier diodes fabricated on the three MOCVD-grown films, each exhibiting variations in the epilayer thickness, doping levels, and growth rates. The diode from the 2 μm thick Ga2O3 epilayer with TEGa precursor demonstrates promising forward current densities, the lowest specific on-resistance, and the lowest ideality factor, endorsing TEGa’s potential for MOCVD growth. Conversely, the diode from the 9.5 μm thick Ga2O3 layer with TMGa precursor exhibits excellent characteristics in terms of lowest leakage current, highest on-off ratio, and highest reverse breakdown voltage of −510 V without any electric field management, emphasizing TMGa’s suitability for achieving high growth rates in Ga2O3 epilayers for vertical power electronic devices.more » « less
-
Ramamoorthy, Ramesh (Ed.)Diamond is a wide bandgap semiconductor possessing unique properties for applications in quantum systems and ultra-wide bandgap electronics, which require a fundamental understanding of processing of high-quality diamond crystals and textured films by microwave plasma-enhanced chemical vapor deposition (MPECVD). The approach of bias-enhanced nucleation (BEN) followed by growth is studied for the processing of oriented diamond film with azimuthal texture. The magnitude of the applied electric field is shown to play an important role in the processing of the highly azimuthally textured diamond film on Si (100) substrate. The X-ray diffraction pole figure, scanning electron microscopy, and Raman spectroscopy results show that an optimum applied electric field during BEN and microwave plasma conditions leads to the formation of diamond film with azimuthal texture upon growth by MPECVD. These results are promising for fabricating diamond films of optimum characteristics containing nitrogen-vacancy (NV) defect centers for application in quantum devices.more » « less
An official website of the United States government
