Rapid mixing is a critical step in many nanoparticle syntheses that can impact the ability to scale production from bench to industrial levels. This study combines experimental and computational approaches to characterize mixing dynamics in crossflow jet mixing reactors (JMRs) with millimeter-scale internal dimensions. The Villermaux-Dushman reaction system is used to quantify experimental mixing times across different reactor sizes and flow rates. Complementary computational fluid dynamics (CFD) simulations assess changes in the state of the flow and estimate mixing times under varying operating conditions. Mixing times derived from CFD results agree well with the experimental results for mixing indices between 0.95 and 0.98. To demonstrate the impact of mixing on nanoparticle formation, we synthesize polybutylacrylate-b-polyacrylic acid (PBA-PAA) block co-polymer nanoparticles, confirming the existence of a critical flow rate beyond which particle size stabilizes. Additionally, we produce polylactic acid-co-glycolic acid (PLGA) nanoparticles incorporating a hydrophobic dye, achieving an average particle size below 300 nm at a throughput of ∼ 1.3 kg/day. These results provide insights into optimizing JMRs for high-throughput, reproducible nanoparticle synthesis, bridging the gap between benchtop and industrial-scale production.
more »
« less
This content will become publicly available on August 31, 2026
Proof of Concept for Flow Through Nanoparticle Trapping Using a Dielectrophoretic Metal‐Coated Nanofiber Mat
ABSTRACT While traditional dielectrophoretic methods for nanoparticle enrichment and filtration are versatile and selective, they struggle to handle higher throughput applications. To address this challenge and enhance the practical application of dielectrophoresis, we propose an innovative design for porous sandwiched nanofiber electrodes. The electrode is fabricated through a simple process involving the electrospinning of nanofibers with a diameter of 216 ± 28 nm and mat thickness of around 70 µm, followed by the deposition of a thin chromium/gold layer (approximately 140 nm thick) on both sides. This process ensures no electrical short circuit occurs between the electrodes, and it maintains a sheet resistance of 7.19 Ω/□. The resulting significant electric field gradients are capable of trapping nanoparticles with diameters of 100 nm and 40 nm. The structure's sub‐micrometer features and large active surface area allow for trapping of nanoparticles at a flow rate of 3.6 mL/h. To evaluate the effects of applied voltage and volumetric flow rate, we conducted experiments with constant voltage while varying the flow rate and constant flow rate while varying the voltage. Our findings indicate that trapping performance improves with higher AC voltage but decreases at higher flow rates. These insights are crucial for optimizing parameters for large‐scale nanoparticle enrichment and filtration. This proof‐of‐concept study for flow through dielectrophoresis of nanoparticles paves the way for a device suitable for large‐scale sample processing and higher throughput/separation efficiency in practical settings.
more »
« less
- Award ID(s):
- 2121008
- PAR ID:
- 10640264
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- ELECTROPHORESIS
- ISSN:
- 0173-0835
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Rapid mixing is a critical step in many nanoparticle syntheses that can impact the ability to scale production from bench to industrial levels. This study combines experimental and computational approaches to characterize mixing dynamics in crossflow jet mixing reactors (JMRs) with millimeter-scale internal dimensions. The Villermaux-Dushman reaction system is used to quantify experimental mixing times across different reactor sizes and flow rates. Complementary computational fluid dynamics (CFD) simulations assess changes in the state of the flow and estimate mixing times under varying operating conditions. Mixing times derived from CFD results agree well with the experimental results for mixing indices between 0.95 and 0.98. To demonstrate the impact of mixing on nanoparticle formation, we synthesize polybutylacrylate-b-polyacrylic acid (PBA-PAA) block co-polymer nanoparticles, confirming the existence of a critical flow rate beyond which particle size stabilizes. Additionally, we produce polylactic acid-co-glycolic acid (PLGA) nanoparticles incorporating a hydrophobic dye, achieving an average particle size below 300 nm at a throughput of ~1.3 kg/day. These results provide insights into optimizing JMRs for high-throughput, reproducible nanoparticle synthesis, bridging the gap between benchtop and industrial-scale production.more » « less
-
One major challenge in the development of nanoparticle-based therapeutics, including viral vectors for the delivery of gene therapies, is the development of cost-effective purification technologies. The objective of this study was to examine fouling and retention behaviors during the filtration of model nanoparticles through membranes of different pore sizes and the effect of solution conditions. Data were obtained with 30 nm fluorescently labeled polystyrene latex nanoparticles using both cellulosic and polyethersulfone membranes at a constant filtrate flux, and both pressure and nanoparticle transmission were evaluated as a function of cumulative filtrate volume. The addition of NaCl caused a delay in nanoparticle transmission and an increase in fouling. Nanoparticle transmission was also a function of particle hydrophobicity. These results provide important insights into the factors controlling transmission and fouling during nanoparticle filtration as well as a framework for the development of membrane processes for the purification of nanoparticle-based therapeutics.more » « less
-
Dielectrophoresis (DEP) is a label-free electrokinetic method for selectively trapping polarizable particles using non-uniform electric fields. While co-planar electrode systems are common, their inherent DEP force distribution limits throughput. This study presents a computationally efficient framework for modeling two-dimensional DEP-based particle trapping in ordered arrays of conductive cylinders. These cylinders are modeled at a range of sizes, from micrometers to nanometers, to represent microfluidic systems consisting of conductive pillars, nanofibers, etc. Analytical solutions for fluid flow and electric potential were derived using eigenfunction expansions and collocation, then used in a particle tracking model that includes hydrodynamic drag, Brownian motion, and multipolar DEP forces. Although focused on conductive arrays, this framework is extensible to other configurations. This work provides a foundation for future work in the design of high-throughput DEP systems. Both dimensionless and dimensional analyses were performed across a wide range of particle sizes (30 nm to 3 μm), voltages (10 mV to 100 V), and array geometries. No specific optimal cylinder size was found; instead, optimal performance arises from a balance between DEP force distribution and flow through the cylinder array gap. Diamond-oriented arrays exhibited enhanced trapping under moderate dielectrophoretic velocity-to-fluid velocity ratios (up to 39% greater), while square arrays performed better under low-field and large-cylinder conditions (up to 40% greater).more » « less
-
Nanoparticles with aerodynamic diameters of less than 100 nm pose serious problems to human health due to their small size and large surface area. Despite continuous progress in materials science to develop air remediation technologies, efficient nanoparticle filtration has appeared to be challenging. This study showcases the great promise of MXene-coated polyester textiles to efficiently filter nanoparticles, achieving a high efficiency of ~90% within the 15–30 nm range. Using alkaline earth metal ions to assist textile coating drastically improves the filter performance by ca. 25%, with the structure–property relationship thoroughly assessed by electron microscopy and X-ray computed tomography. Such techniques confirm metal ions’ crucial role in obtaining fully coated and impregnated textiles, which increases tortuosity and structural features that boost the ultimate filtration efficiency. Our work provides a novel perspective on using MXene textiles for nanoparticle filtration, presenting a viable alternative to produce high-performance air filters for real-world applications.more » « less
An official website of the United States government
