skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on October 22, 2026

Title: MADAR: Efficient Continual Learning for Malware Analysis with Distribution-Aware Replay
Millions of new pieces of malicious software (i.e., malware) are introduced each year. This poses significant challenges for antivirus vendors, who use machine learning to detect and analyze malware, and must keep up with changes in the distribution while retaining knowledge of older variants. Continual learning (CL) holds the potential to address this challenge by relaxing the requirements of the incremental storage and computational costs of regularly retraining over all the collected data. Prior work, however, shows that CL techniques, which are designed primarily for computer vision tasks, fare poorly when applied to malware classification. To address these issues, we begin with an exploratory analysis of a typical malware dataset, which reveals that malware families are heterogeneous and difficult to characterize, requiring a wide variety of samples to learn a robust representation. Based on these findings, we propose Malware Analysis with Distribution-Aware Replay (MADAR), a CL framework that accounts for the unique properties and challenges of the malware data distribution. Through extensive evaluation on large-scale Windows and Android malware datasets, we show that MADAR significantly outperforms prior work. This highlights the importance of understanding domain characteristics when designing CL techniques and demonstrates a path forward for the malware analysis domain.  more » « less
Award ID(s):
2422241
PAR ID:
10640515
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
CAMLIS 2025
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Malicious software (malware) classification offers a unique challenge for continual learning (CL) regimes due to the volume of new samples received on a daily basis and the evolution of malware to exploit new vulnerabilities. On a typical day, antivirus vendors receive hundreds of thousands of unique pieces of software, both malicious and benign, and over the course of the lifetime of a malware classifier, more than a billion samples can easily accumulate. Given the scale of the problem, sequential training using continual learning techniques could provide substantial benefits in reducing training and storage overhead. To date, however, there has been no exploration of CL applied to malware classification tasks. In this paper, we study 11 CL techniques applied to three malware tasks covering common incremental learning scenarios, including task, class, and domain incremental learning (IL). Specifically, using two realistic, large-scale malware datasets, we evaluate the performance of the CL methods on both binary malware classification (Domain-IL) and multi-class malware family classification (Task-IL and Class-IL) tasks. To our surprise, continual learning methods significantly underperformed naive Joint replay of the training data in nearly all settings – in some cases reducing accuracy by more than 70 percentage points. A simple approach of selectively replaying 20% of the stored data achieves better performance, with 50% of the training time compared to Joint replay. Finally, we discuss potential reasons for the unexpectedly poor performance of the CL techniques, with the hope that it spurs further research on developing techniques that are more effective in the malware classification domain. 
    more » « less
  2. In applying deep learning for malware classifica- tion, it is crucial to account for the prevalence of malware evolution, which can cause trained classifiers to fail on drifted malware. Existing solutions to address concept drift use active learning. They select new samples for analysts to label and then retrain the classifier with the new labels. Our key finding is that the current retraining techniques do not achieve optimal results. These techniques overlook that updating the model with scarce drifted samples requires learning features that remain consistent across pre-drift and post-drift data. The model should thus be able to disregard specific features that, while beneficial for the classification of pre-drift data, are absent in post-drift data, thereby preventing prediction degradation. In this paper, we propose a new technique for detecting and classifying drifted malware that learns drift-invariant features in malware control flow graphs by leveraging graph neural networks with adversarial domain adaptation. We compare it with existing model retraining methods in active learning-based malware detection systems and other domain adaptation techniques from the vision domain. Our approach significantly improves drifted malware detection on publicly available benchmarks and real-world malware databases reported daily by security companies in 2024. We also tested our approach in predicting multiple malware families drifted over time. A thorough evaluation shows that our approach outperforms the state-of-the-art approaches. 
    more » « less
  3. Although much of the work in behaviorally detecting malware lies in collecting the best explanatory data and using the most efficacious machine learning models, the processing of the data can sometimes prove to be the most important step in the data pipeline. In this work, we collect kernel-level system calls on a resource-constrained Internet of Things (IoT) device, apply lightweight Natural Language Processing (NLP) techniques to the data, and feed this processed data to two simple machine learning classification models: Logistic Regression (LR) and a Neural Network (NN). For the data processing, we group the system calls into n-grams that are sorted by the timestamp in which they are recorded. To demonstrate the effectiveness, or lack thereof, of using n-grams, we deploy two types of malware onto the IoT device: a Denial-of-Service (DoS) attack, and an Advanced Persistent Threat (APT) malware. We examine the effects of using lightweight NLP on malware like the DoS and the stealthy APT malware. For stealthier malware, such as the APT, using more advanced, but far more resource-intensive, NLP techniques will likely increase detection capability, which is saved for future work. 
    more » « less
  4. With machine learning techniques widely used to automate Android malware detection, it is important to investigate the robustness of these methods against evasion attacks. A recent work has proposed a novel problem-space attack on Android malware classifiers, where adversarial examples are generated by transforming Android malware samples while satisfying practical constraints. Aimed to address its limitations, we propose a new attack called EAGLE (Evasion Attacks Guided by Local Explanations), whose key idea is to leverage local explanations to guide the search for adversarial examples. We present a generic algorithmic framework for EAGLE attacks, which can be customized with specific feature increase and decrease operations to evade Android malware classifiers trained on different types of count features. We overcome practical challenges in implementing these operations for four different types of Android malware classifiers. Using two Android malware datasets, our results show that EAGLE attacks can be highly effective at finding functionable adversarial examples. We study the attack transferrability of malware variants created by EAGLE attacks across classifiers built with different classification models or trained on different types of count features. Our research further demonstrates that ensemble classifiers trained from multiple types of count features are not immune to EAGLE attacks. We also discuss possible defense mechanisms against EAGLE attacks. 
    more » « less
  5. Machine learning techniques are widely used in addition to signatures and heuristics to increase the detection rate of anti-malware software, as they automate the creation of detection models, making it possible to handle an ever-increasing number of new malware samples. In order to foil the analysis of anti-malware systems and evade detection, malware uses packing and other forms of obfuscation. However, few realize that benign applications use packing and obfuscation as well, to protect intellectual property and prevent license abuse. In this paper, we study how machine learning based on static analysis features operates on packed samples. Malware researchers have often assumed that packing would prevent machine learning techniques from building effective classifiers. However, both industry and academia have published results that show that machine-learning-based classifiers can achieve good detection rates, leading many experts to think that classifiers are simply detecting the fact that a sample is packed, as packing is more prevalent in malicious samples. We show that, different from what is commonly assumed, packers do preserve some information when packing programs that is “useful” for malware classification. However, this information does not necessarily capture the sample’s behavior. We demonstrate that the signals extracted from packed executables are not rich enough for machine-learning-based models to (1) generalize their knowledge to operate on unseen packers, and (2) be robust against adversarial examples. We also show that a na¨ıve application of machine learning techniques results in a substantial number of false positives, which, in turn, might have resulted 
    more » « less