skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Growth chamber reciprocal transplant dataset
Phenotypic plasticity can alter traits that are crucial to population\n establishment in a new environment, before adaptation can occur. How often\n phenotypic plasticity enables subsequent adaptive evolution is unknown,\n and examples of the phenomenon are limited. We investigated the hypothesis\n of plasticity-mediated persistence as a means of colonization of\n agricultural fields in one of the world’s worst weeds, Raphanus\n raphanistrum ssp. raphanistrum. Using non-weedy native populations of the\n same species and subspecies as a comparison, we tested for\n plasticity-mediated persistence in a growth chamber reciprocal transplant\n experiment. We identified traits with genetic differentiation between the\n weedy and native ecotypes as well as phenotypic plasticity between growth\n chamber environments. We found that most traits were both plastic and\n differentiated between ecotypes, with the majority plastic and\n differentiated in the same direction. This suggests that phenotypic\n plasticity may have enabled radish populations to colonize and then adapt\n to novel agricultural environments."],"TechnicalInfo":["# Growth Chamber Reciprocal Transplant Dataset\n [https://doi.org/10.5061/dryad.4mw6m90kb](https://doi.org/10.5061/dryad.4mw6m90kb) This dataset contains the phenotypic data collected from plants grown in the growth chamber reciprocal transplant experiment, as well as the conditions in the growth chambers. ## Description of the data and file structure The dataset contains three sheets: "Chamber Conditions", "Main Data", and "Leaf Data" (although much of the information in "Leaf Data" has been incorporated into "Main data") ### Chamber Conditions This sheet contains the temperature and day length set points for each chamber each week. All temperature and day length information from the two weather stations used (LGER and KBTL) were collected from [www.wunderground.com](http://www.wunderground.com). Variables: * Granada, Spain (LGER) - the dates from which we collected temperature and day length information from the Grenada, Spain weather station (LGER) to simulate in the Winter Annual chamber * HighTempGrenada - the Winter Annual chamber's daytime set points, based on the average maximum temperature in Grenada on a given day * LowTempGrenada - the Winter Annual chamber's nighttime set points, based on the average minimum temperature in Grenada on a given day * DayLengthGrenada - the length of time the Winter Annual chamber was in its day cycle (lights on and typically higher temps), based on length of visible light in Grenada * DayStartGrenada - programed start of day time in the Winter Annual growth chamber * DayEndGrenada - programmed end of day time in the Winter Annual growth chamber * Date Set - the real-life date on which we changed the chamber conditions. * Augusta, MI (KBTL) - the dates from which we collected temperature and day length information from the Augusta, MI, USA weather station (KBTL) to simulate in the Spring Annual chamber * HighTempAugusta - the Spring Annual chamber's daytime set points, based on the average maximum temperature in Augusta on a given day * LowTempAugusta - the Spring Annual chamber's nighttime set points, based on the average minimum temperature in Augusta on a given day * DayLengthAugusta - the length of time the Spring Annual chamber was in its day cycle (lights on and typically higher temps), based on length of visible light in Augusta * DayStartAugusta - programed start of day time in the Spring Annual growth chamber * DayEndAugusta - programmed end of day time in the Spring Annual growth chamber ### Main Data This sheet contains all of the data used in our analyses, as well as descriptors for plants and growth chambers. Variables: * Chamber # - the number designation of the four growth chambers used in this study * Environment - the growing conditions in a given growth chamber, with "Winter Annual" corresponding to the "Grenada, Spain (LGER)" columns in Chamber Conditions, and "Spring Annual" corresponding to "Augusta, MI (KBTL)" * Ecotype - variety of* R. raphanistrum*, either weedy or native * Population - the six source populations used in this study identified by their location codes, with the final two letters denoting country or state (FR=France, ES=Spain, NY=New York, NC=North Carolina) and the first two letters denoting a specific location in those areas (available in Table 1 of the manuscript) * Matriline -  a line number is listed when discrete matrilines are known from field collections, but not for seeds collected in bulk (in which case the cell will be blank) * Flat - plants were arranged into four flats in each chamber, and the flats within a chamber were each assigned a number (1-4) * Position - the position of each plant within a flat was also tracked and pots were assigned a position number (1-35) * Pot# - Number assigned to each plant to give it a unique identifier -- for plants with individual matrilines tracked, pot # only went up to 2, while plants with unknown matrilines had pot numbers up to 40 to ensure individuals could be tracked * Plant Date - the date seeds were sown into each pot * Germ[1-5] - the date that each one of 5 seeds planted emerged as a germinant -- blank cells indicate that a germinant did not emerge * Plant Kept - the emergence date of the single plant that remained in the pot after excess germinants were thinned; missing values mean no germinants emerged or did not survive past the seedling stage * Days to Emergence - calculated as the day of emergence minus the planting date; missing values mean no germinants emerged or did not survive past the seedling stage * Rosette Photo Date - the date on which overhead and side photos of plants were taken, also the day the plants first showed signs of bolting (buds visible); missing values mean the plant did not survive to bolting * \\# Rosette Leaves - the number of leaves in the basal rosette, counted on the day of bolting; missing values mean the plant did not survive to bolting * Rosette Height - the vertical height of the tallest free-standing basal rosette leaf, measured from the height of the soil (cm); missing values mean the plant did not survive to bolting * 1st flower date - the date on which the first flower on a plant opened; missing values mean the plant did not survive to flowering * Days to First Flower - calculated as 1st flower date minus emergence date; missing values mean the plant did not survive to flowering * 1st Flower Height - measured on the first flower date, it is the vertical distance from the soil to the point at which the first open flower's pedicel connects to the main stalk (cm); missing values mean the plant did not survive to flowering * Ovule # - collected from typically the third flower to open, it is the number of ovules in one flower of a given plant; missing values mean the plant did not survive to flowering or ovules were not clearly visible * Notes - any additional information on a plant that we tracked * Blossom Photo Date - the date on which we took top and side photographs of at least the third flower to open, taken at the same time that ovule number was counted; missing values mean the plant did not survive to flowering  * PetalLength - measured using a top-view photo in Image J, the distance from the tip of the petal to where it meets the floral tube in the center of the floral display (mm); missing values mean the plant did not survive to flowering or the view in the photo was obscured so the measurement could not be taken * PetalWidth - measured using a top-view photo in Image J, the distance from the widest part of the petal, perpendicular to the line measured for petal length (mm); missing values mean the plant did not survive to flowering or the view in the photo was obscured so the measurement could not be taken * Tube - measured using a side-view photo in Image J, the length of the most clearly visible petal from where it meets the pedicel to the apex of its curve outward (mm); missing values mean the plant did not survive to flowering or the view in the photo was obscured so the measurement could not be taken * LAnther - measured using a side-view photo in Image J, the length of the anther of the long stamen from where it meets its filament to its tip (mm); missing values mean the plant did not survive to flowering or the view in the photo was obscured so the measurement could not be taken * LFilament - measured using a side-view photo in Image J, the length of the frontmost (closest to the camera) long filament from where it meets the pedicel to where it meets its anther (mm); missing values mean the plant did not survive to flowering or the view in the photo was obscured so the measurement could not be taken * SAnther - measured using a side-view photo in Image J, the length of the anther of the short stamen from where it meets its filament to its tip (mm); missing values mean the plant did not survive to flowering or the view in the photo was obscured so the measurement could not be taken * SFilament - measured using a side-view photo in Image J, the length of the frontmost (closest to the camera) short filament from where it meets the pedicel to where it meets its anther (mm); missing values mean the plant did not survive to flowering or the view in the photo was obscured so the measurement could not be taken * Pistil - measured using a side-view photo in Image J, the length of the pistil made by drawing a line down the center of the pistil from the top of the stigma to where it meets the pedicel (mm); missing values mean the plant did not survive to flowering or the view in the photo was obscured so the measurement could not be taken * AntherExsertion - calculated as long filament length minus the tube length (mm); missing values mean the plant did not survive to flowering or that either one of the values needed for the measurement was missing * AntherSeparation - calculated as long filament length minus the short filament length (mm); missing values mean the plant did not survive to flowering or one or that either one of the values needed for the measurement was missing * FlowerSize - the geometric mean of all floral traits (excluding anther exsertion and anther separation; mm); missing values mean the plant did not survive to flowering or one or more flower trait was missing * LeafWidth - measured using either a top-view or side-view photo in Image J, the distance between each edge of the leaf measured at its widest point, with the line being perpendicular to the central leaf vein on the largest fully visible leaf (more information in the Leaf Data sheet; cm); missing values mean the plant did not survive to bolting or a picture was not taken * LeafLength -  measured using either a top-view or side-view photo in Image J using the segmented line tool, follow the central vein of the largest visible leaf from the center of the rosette to the tip of the leaf (more information in the Leaf Data sheet; cm); missing values mean the plant did not survive to bolting or a picture was not taken ### Leaf Data This sheet includes some additional information about Leaf Length and Leaf Width measurements. Side image was only used when leaf was not flat or clearly visible in the top image. Variables: * Top Photo Image - image ID of the top view photo of the plant being measured * Ecotype - the ecotype of the plant (more information in Main Data) * Population - the population that the plant belongs to (more information in Main Data) * Plant Label - the label visible in the image -- includes population, matriline (when available), and pot # * Leaf Width (cm) - measured using the top-view photo in Image J, the distance between each edge of the leaf measured at its widest point, with the line being perpendicular to the central leaf vein on the largest fully visible leaf; missing values mean that a picture was not taken or the leaf was obscured in the top view photo * Leaf Length 1 (cm) - measured using the top-view photo in Image J using the segmented line tool, follow the central vein of the largest visible leaf from the center of the rosette to the tip of the leaf; missing values mean that a picture was not taken or the leaf was obscured in the top view photo * Side Photo Image - Image ID of the side view photo of the plant being measured; side image was only used when leaf was not flat or clearly visible in the top image, so missing values indicate that the length and width of the leaf could be reliably measured using the top view photo * Leaf Length 2 (cm) - measured using the side-view photo in Image J using the segmented line tool, follow the central vein of the largest visible leaf from the center of the rosette to the tip of the leaf; missing values mean that a picture was not taken or that the length of the leaf could be reliably measured using the top view photo * Leaf Width 2 (cm) - measured using the side-view photo in Image J, the distance between each edge of the leaf measured at its widest point, with the line being perpendicular to the central leaf vein on the largest fully visible leaf; missing values mean that a picture was not taken or that the width of the leaf could be reliably measured using the top view photo * Notes - any additional information about the the measurement of a particular plants' leaf length or width"]}  more » « less
Award ID(s):
2223962 1655386
PAR ID:
10640772
Author(s) / Creator(s):
Publisher / Repository:
Dryad
Date Published:
Edition / Version:
3
Subject(s) / Keyword(s):
FOS: Natural sciences FOS: Natural sciences phenotypic plasticity adaptive evolution agricultural weeds plasticity-mediated persistence
Format(s):
Medium: X Size: 120657 bytes
Size(s):
120657 bytes
Sponsoring Org:
National Science Foundation
More Like this
  1. Premise of the StudyNew growth in the spring requires resource mobilization in the vascular system at a time when xylem and phloem function are often reduced in seasonally cold climates. As a result, the timing of leaf out and/or flowering could depend on when the vascular system resumes normal function in the spring. This study investigated whether flowering time is influenced by vascular phenology in plants that flower precociously before they have leaves. MethodsFlower, leaf, and vascular phenology were monitored in pairs of precocious and non‐precocious congeners. Differences in resource allocation were quantified by measuring bud dry mass and water content throughout the year, floral hydration was modelled, and a girdling treatment completed on branches in the field. Key ResultsPrecocious flowering species invested more in floral buds the year before flowering than did their non‐precocious congeners, thus mobilizing less water in the spring, which allowed flowering before new vessel maturation. ConclusionsA shift in the timing of resource allocation in precocious flowering plants allowed them to flower before the production of mature vessels and minimized the significance of seasonal changes in vascular function to their flowering phenology. The low investment required to complete floral development in the spring when the plant vascular system is often compromised could explain why flowers can emerge before leaf out. 
    more » « less
  2. We assessed mechanistic temperature influence on flowering by incorporating temperature-responsive flowering mechanisms across developmental age into an existing model. Temperature influences the leaf production rate as well as expression of FLOWERING LOCUS T (FT), a photoperiodic flowering regulator that is expressed in leaves. The Arabidopsis Framework Model incorporated temperature influence on leaf growth but ignored the consequences of leaf growth on and direct temperature influence of FT expression. We measured FT production in differently aged leaves and modified the model, adding mechanistic temperature influence on FT transcription, and causing whole-plant FT to accumulate with leaf growth. Our simulations suggest that in long days, the developmental stage (leaf number) at which the reproductive transition occurs is influenced by day length and temperature through FT, while temperature influences the rate of leaf production and the time (in days) the transition occurs. Further, we demonstrate that FT is mainly produced in the first 10 leaves in the Columbia (Col-0) accession, and that FT accumulation alone cannot explain flowering in conditions in which flowering is delayed. Our simulations supported our hypotheses that: (i) temperature regulation of FT, accumulated with leaf growth, is a component of thermal time, and (ii) incorporating mechanistic temperature regulation of FT can improve model predictions when temperatures change over time. 
    more » « less
  3. {"Abstract":["Traits conserved across evolutionary time often provide compelling\n examples of key adaptations for a given taxonomic group. Tetradynamy is\n the presence of four long stamens plus two short stamens within a flower\n and is conserved across most of the roughly 4000 species in the mustard\n family, Brassicaceae. While this differentiation in stamens is\n hypothesized to play a role in pollination efficiency, very little is\n known about the potential function of the two stamen types. The present\n study sheds new light on this mystery using wild radish (Raphanus\n raphanistrum), a widespread and well-studied tetradynamous plant. We used\n data collected from slow-motion videos of pollinators visiting wild radish\n flowers to test three non-mutually exclusive adaptive hypotheses: 1) short\n and long stamens are specialized for either feeding or pollinating, 2)\n short and long stamens are specialized for different pollinator taxa, and\n 3) the presence of short and long stamens increases pollinator movement\n and thus effectiveness. We find evidence consistent with hypothesis three,\n but no evidence for hypotheses one or two. Thus, tetradynamy may be an\n adaptation for generalized pollination, enabling effective visits by the\n variety of pollinators visiting most species of Brassicaceae."],"TechnicalInfo":["# Data from: Testing adaptive hypotheses for an evolutionarily conserved\n trait through slow-motion videos of pollinators The data contained in\n these files was generated from close observation of slow-motion video\n footage by the same experimenter for each variable. ## Description of\n Files ### MainData.csv Data related to slow-motion video analysis,\n including plant information, anther and stigma contact, and number of\n movements Missing data are indicated by "NA" #### Basic Video\n Info in Columns A:F * VideoID: unique individual video identifier *\n PlantID: unique individual plant identifier with the following format -\n "PopulationCode FamilyCode-Replicate" * PopulationCode: BINY =\n natural population, Sep = separation-selected, Exsertion =\n exsertion-selected * FamilyCode: unique 3-5 character code for a given\n maternal seed family * Replicate: individual plant number between 0 and 9,\n where replicate 0 is indicated by the lack of a hyphen and number * Date:\n date of observations * Year: year of observations * Pollinator: taxa of\n visiting pollinator * VideoLength: total length of visit in 1/8 real-time\n seconds #### Feeding Info in Columns G:N * G:K are binary columns in which\n 1 indicates the visit included foraging in the given category, 0 indicates\n lack of foraging, and ? indicates uncertainty ("Short" = short\n stamen anthers, "Long" = long stamen anthers) * L:N summarize\n the info from G:K in different ways * Foraging: whether the visit included\n foraging on nectar, pollen, or both * Feed_All: for visits including\n pollen-foraging, whether foraging was on short stamen anthers, long stamen\n anthers, or both * Feed_Bin: same as Feed_All but groups "Long"\n and "Short" into "One" #### Contact Info in Columns\n O:AM Columns have the following format:\n "ResponseVariable_BodySection_FlowerPart" * ResponseVariable is\n what kind of contact is being recorded and can take three values: * sec:\n duration of contact in 1/8 real-time seconds * bin: binary contact, 1 =\n contacted and 0 = not contacted * n: count of body sections contacted\n (sums binary contact with Legs, Ventral, Side) * BodySection is the part\n of the pollinator body contacted and can take four values: Ventral, Side,\n Legs, or Total (sum of prior 3) * FlowerPart is the part of the flower\n contacted by the pollinator and can take 4 values: S (short stamen\n anthers), L (long stamen anthers), Stigma, or Anthers (both short and long\n stamen anthers) #### Movement Info in Columns AN:AR * Between_Moves: # of\n movements from feeding on one stamen to another * Within_Moves: # of\n movements within stamen types, combining movements from long to long\n stamen ("Long.Long_Moves") and movements from short to short\n stamen ("Short.Short_Moves") * Total_Moves: total # of movements\n from one stamen to another ### DyeSwab.csv Data from small preliminary\n test in which 3 bees were swabbed with gelatin cubes after visiting\n flowers with short and long stamens marked with different colors of\n fluorescent dye. * ID: unique individual bee identifier * BodySection: the\n body section swabbed * NParticles: count of dye particles contained in\n gelatin swab * StamenType: type of stamen matching the color of counted\n particles ### Final_Analysis_Dryad.R R script of all analyses used in the\n paper. * Details provided as comments within script. * The script was run\n in RStudio running R v. 4.4.2."]} 
    more » « less
  4. Abstract Current models of island biogeography treat endemic and non‐endemic species as if they were functionally equivalent, focussing primarily on species richness. Thus, the functional composition of island biotas in relation to island biogeographical variables remains largely unknown. Using plant trait data (plant height, leaf area and flower length) for 895 native species in the Canary Islands, we related functional trait distinctiveness and climate rarity for endemic and non‐endemic species and island ages. Endemics showed a link to climatically rare conditions that is consistent with island geological change through time. However, functional trait distinctiveness did not differ between endemics and non‐endemics and remained constant with island age. Thus, there is no obvious link between trait distinctiveness and occupancy of rare climates, at least for the traits measured here, suggesting that treating endemic and non‐endemic species as functionally equivalent in island biogeography is not fundamentally wrong. 
    more » « less
  5. Abstract Many attachments to a scanning electron microscope (SEM), such as energy dispersive x‐ray spectroscopy, extend its function significantly. Typically, the application of such attachments requires that the specimen has a planar surface at a specific orientation. It is a challenge to make the plane of a microscale specimen satisfy the orientation requirement since they are visible only in an SEM. An in‐situ procedure is needed to adjust specimen orientation by using stage rotation and tilting functions, in the process of which the key is to determine the initial orientation. This study proposed and tested top‐down and side‐view approaches to determine the orientation of a planar surface inside an SEM. In the top‐down one, the projected area is monitored on SEM images as stage rotation and tilt angles are adjusted. When the surface normal is along the electron beam direction, the area has a maximum value. In the side‐view approach, the stage is adjusted so that the projection appears to be a straight horizontal line on the SEM image. Once the orientation of the specimen for top‐down or side‐view observation is determined, the original can be calculated, and a desired orientation can be realized by manipulating the stage. The procedures have been tested by analyzing planar surfaces of spherical particles in Al‐Cu‐Fe alloy in the form of facets. The measured angles between two surfaces are consistent with those expected from crystallographic consideration within 2.7° and 1.7° for the top‐down and side‐view approaches, respectively. Research HighlightsTop‐down and side‐view approaches have been proposed and tested for in‐situ determination of specimen planar surface orientation in a Scanning Electron Microscope.The measured angles between two surfaces are consistent with those expected from crystallographic consideration within 2.7° and 1.7° for the top‐down and side‐view approaches, respectively. 
    more » « less