Abstract This work utilizes frustrated Lewis pairs consisting of tethered bis‐organophosphorus superbases and a bulky organoaluminum to furnish the highly efficient synthesis of well‐defined triblock copolymers via one‐step block copolymerization of lignin‐based syringyl methacrylate andn‐butyl acrylate, through di‐initiation and compounded sequence control. The resulting thermoplastic elastomers (TPEs) exhibit microphase separation and much superior mechanical properties (elongation at break up to 2091 %, tensile strength up to 11.5 MPa, and elastic recovery up to 95 % after 10 cycles) to those of methyl methacrylate‐based TPEs. More impressively, lignin‐based tri‐BCPs can maintain TPEs properties up to 180 °C, exhibit high transparency and nearly 100 % UV shield, suggesting potential applications in temperature‐resistant and optical devices.
more »
« less
Supersoft Norbornene‐Based Thermoplastic Elastomers with High Strength and Upper Service Temperature
Abstract With over 6 million tons produced annually, thermoplastic elastomers (TPEs) have become ubiquitous in modern society, due to their unique combination of elasticity, toughness, and reprocessability. Nevertheless, industrial TPEs display a tradeoff between softness and strength, along with low upper service temperatures, typically ≤100 °C. This limits their utility, such as in bio‐interfacial applications where supersoft deformation is required in tandem with strength, in addition to applications that require thermal stability (e.g., encapsulation of electronics, seals/joints for aeronautics, protective clothing for firefighting, and biomedical devices that can be subjected to steam sterilization). Thus, combining softness, strength, and high thermal resistance into a single versatile TPE has remained an unmet opportunity. Through de novo design and synthesis of novel norbornene‐basedABAtriblock copolymers, this gap is filled. Ring‐opening metathesis polymerization is employed to prepare TPEs with an unprecedented combination of properties, including skin‐like moduli (<100 kPa), strength competitive with commercial TPEs (>5 MPa), and upper service temperatures akin to high‐performance plastics (≈260 °C). Furthermore, the materials are elastic, tough, reprocessable, and shelf stable (≥2 months) without incorporation of plasticizer. Structure–property relationships identified herein inform development of next‐generation TPEs that are both biologically soft yet thermomechanically durable.
more »
« less
- Award ID(s):
- 2045336
- PAR ID:
- 10640900
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Materials
- Volume:
- 36
- Issue:
- 30
- ISSN:
- 0935-9648
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT High sulfur‐content materials (HSMs) prepared via inverse vulcanization are attractive for a range of sustainable material applications, particularly when synthesized from waste‐derived feedstocks such as brown grease (BG). Two BG‐based composites,SunBG90andaBG90, were prepared using elemental sulfur and either native or allylated brown grease, respectively. This study explores the effect of reinforcing these sulfur‐rich networks with low loadings (0.5–2 wt. %) of highcis‐1,4‐content liquid polybutadiene (PBD). Incorporation of PBD resulted in significant increases in storage modulus, with a near‐linear relationship between PBD content and stiffness enhancement for both material types. At −60°C, storage modulus increased more than fivefold foraBG90and more than tripled forSunBG90. In contrast, flexural strength and flexural modulus exhibited non‐linear responses, with diminishing or reversed gains at higher PBD loadings, suggesting limits to rubber domain compatibility and dispersion. Thermal analysis confirmed high decomposition temperatures (212°C–226°C) and stable glass transitions, indicating thermal robustness of the reinforced networks. Compared with previous studies requiring higher PBD loadings, these results demonstrate that BG‐based HSMs can be effectively reinforced at low additive levels, offering mechanically robust, low‐cost, and renewable alternatives for structural applications.more » « less
-
Abstract Poly(methyl methacrylate) (PMMA) is an important commodity polymer having a wide range of applications. Currently, only about 10% of PMMA is recycled. Herein, a simple two‐stage process for the chemical upcycling of PMMA is discussed. In this method PMMA is modified by transesterification with a bio‐derived, olefin‐bearing terpenoid, geraniol. In the second stage, olefin‐derivatized PMMA is reacted with sulfur to form a network composite by an inverse vulcanization mechanism. Inverse vulcanization of PGMA with elemental sulfur (90 wt.%) yielded the durable compositePGMA‐S. This composite was characterized by NMR spectrometry, IR spectroscopy, elemental analysis, thermogravimetric analysis, and differential scanning calorimetry. Composite water uptake, compressional strength analysis, flexural strength analysis, tensile strength analysis, and thermal recyclability are presented with comparison to current commercial structural materials.PGMA‐Sexhibits a similar compressive strength (17.5 MPa) to that of Portland cement.PGMA‐Sdemonstrates an impressive flexural strength of 4.76 MPa which exceeds the flexural strength (>3 MPa) of many commercial ordinary Portland cements. This study provides a way to upcycle waste PMMA through combination with a naturally‐occurring olefin and industrial waste sulfur to yield composites having mechanical properties competitive with ecologically detrimental legacy building materials.more » « less
-
Abstract Graphene holds promise for thin, ultralightweight, and high‐performance nanoelectromechanical transducers. However, graphene‐only devices are limited in size due to fatigue and fracture of suspended graphene membranes. Here, a lightweight, flexible, transparent, and conductive bilayer composite of polyetherimide and single‐layer graphene is prepared and suspended on the centimeter scale with an unprecedentedly high aspect ratio of 105. The coupling of the two components leads to mutual reinforcement and creates an ultrastrong membrane that supports 30 000 times its own weight. Upon electromechanical actuation, the membrane pushes a massive amount of air and generates high‐quality acoustic sound. The energy efficiency is≈10–100 times better than state‐of‐the‐art electrodynamic speakers. The bilayer membrane's combined properties of electrical conductivity, mechanical strength, optical transparency, thermal stability, and chemical resistance will promote applications in electronics, mechanics, and optics.more » « less
-
Abstract Herein high-strength composites are prepared from elemental sulfur, sunflower oil, and wastewater sludge. Fats extracted from dissolved air flotation (DAF) solids were reacted with elemental sulfur to yield compositeDAFS(10 wt% DAF fats and 90 wt% sulfur). Additional composites were prepared from DAF fat, sunflower oil and sulfur to giveSunDAFx(x = wt% sulfur, varied from 85–90%). The composites were characterized by spectroscopic, thermal, and mechanical methods. FT-IR spectra revealed a notable peak at 798 cm–1indicating a C–S stretch inDAFS,SunDAF90, andSunDAF85indicating successful crosslinking of polymeric sulfur with olefin units. SEM/EDX analysis revealed homogenous distribution of carbon, oxygen, and sulfur inSunDAF90andSunDAF85. The percent crystallinity exhibited byDAFS(37%),SunDAF90(39%), andSunDAF85(45%) was observed to be slightly lower than that of previous composites prepared from elemental sulfur and fats and oils.DAFSandSunDAFxdisplayed compressive strengths (26.4–38.7 MPa) of up to 227% above that required (17 MPa) of ordinary Portland cement for residential building foundations. The composite decomposition temperatures ranged from 211 to 219 °C, with glass transition temperatures of − 37 °C to − 39 °C. These composites thus provide a potential route to reclaim wastewater organics for use in value-added structural materials having mechanical properties competitive with those of commercial products.more » « less
An official website of the United States government
