Abstract Direct disposal of used soft electronics into the environment can cause severe pollution to the ecosystem due to the inability of most inorganic materials and synthetic polymers to biodegrade. Additionally, the loss of the noble metals that are commonly used in soft electronics leads to a waste of scarce resources. Thus, there is an urgent need to develop “green” and sustainable soft electronics based on eco‐friendly manufacturing that may be recycled or biodegraded after the devices’ end of life. Here an approach to fabricating sustainable soft electronics is demonstrated where the expensive functional materials can be recycled and the soft substrate can be biodegradable. A stretchable agarose/glycerol gel film is used as the substrate, and silver nanowires (AgNWs) are printed on the film to fabricate the soft electronic circuits. The mechanical and chemical properties of the agarose/glycerol gel films are characterized, and the functionality of the printed AgNW electrodes for electrophysiological sensors is demonstrated. The demonstration of the biodegradability of the agarose/glycerol and the recyclability of AgNWs points toward ways to develop sustainable and eco‐friendly soft electronics.
more »
« less
Ecofriendly Printing of Silver Nanowires with Cellulose Binder for Highly Robust Flexible Electronics
Abstract Scalable manufacturing of soft electronics with high performance and reliability represents one of the most demanding challenges for the application of soft electronics. Herein, an ecofriendly silver nanowire (AgNW) based ink with cellulose as the binder is reported. The ink properties, annealing condition, and electromechanical properties of the printed electronics are investigated. With a proper annealing process, the hot‐melt binder under high temperatures provides excellent adhesion between the NWs and the substrate, leading to robust electrical performance of the printed AgNWs under mechanical deformation, tape peeling, scratching, and chemical corrosion. The printed AgNWs are demonstrated as flexible temperature sensors due to their temperature‐dependent resistance behavior. The temperature sensors are used to sense touching, respiration, and body temperature. The mechanical robustness and chemical stability of the printed AgNW electronics, without the need of an encapsulation layer, makes them ideal for skin‐mounted electronics applications.
more »
« less
- Award ID(s):
- 2134664
- PAR ID:
- 10641015
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Electronic Materials
- Volume:
- 11
- Issue:
- 10
- ISSN:
- 2199-160X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Silver nanowires (AgNWs) hold great promise for applications in wearable electronics, flexible solar cells, chemical and biological sensors, photonic/plasmonic circuits, and scanning probe microscopy (SPM) due to their unique plasmonic, mechanical, and electronic properties. However, the lifetime, reliability, and operating conditions of AgNW-based devices are significantly restricted by their poor chemical stability, limiting their commercial potentials. Therefore, it is crucial to create a reliable oxidation barrier on AgNWs that provides long-term chemical stability to various optical, electrical, and mechanical devices while maintaining their high performance. Here we report a room-temperature solution-phase approach to grow an ultra-thin, epitaxial gold coating on AgNWs to effectively shield the Ag surface from environmental oxidation. The Ag@Au core-shell nanowires (Ag@Au NWs) remain stable in air for over six months, under elevated temperature and humidity (80 °C and 100% humidity) for twelve weeks, in physiological buffer solutions for three weeks, and can survive overnight treatment of an oxidative solution (2% H 2 O 2 ). The Ag@Au core-shell NWs demonstrated comparable performance as pristine AgNWs in various electronic, optical, and mechanical devices, such as transparent mesh electrodes, surface-enhanced Raman spectroscopy (SERS) substrates, plasmonic waveguides, plasmonic nanofocusing probes, and high-aspect-ratio, high-resolution atomic force microscopy (AFM) probes. These Au@Ag core-shell NWs offer a universal solution towards chemically-stable AgNW-based devices without compromising material property or device performance.more » « less
-
A silver nanowire (AgNW) based conductor is a promising component for flexible and stretchable electronics. A wide range of flexible/stretchable devices using AgNW conductors has been demonstrated recently. High-resolution, high-throughput printing of AgNWs remains a critical challenge. Electrohydrodynamic (EHD) printing has been developed as a promising technique to print different materials on a variety of substrates with high resolution. Here, AgNW ink was developed for EHD printing. The printed features can be controlled by several parameters including AgNW concentration, ink viscosity, printing speed, stand-off distance, etc . With this method, AgNW patterns can be printed on a range of substrates, e.g. paper, polyethylene terephthalate (PET), glass, polydimethylsiloxane (PDMS), etc. First, AgNW samples on PDMS were characterized under bending and stretching. Then AgNW heaters and electrocardiogram (ECG) electrodes were fabricated to demonstrate the potential of this printing technique for AgNW-based flexible and stretchable devices.more » « less
-
Screen printing is a promising route towards high throughput printed electronics. Currently, the preparation of nanomaterial based conductive inks involves complex formulations with often toxic surfactants in the ink's composition, making them unsuitable as an eco-friendly printing technology. This work reports the development of a silver nanowire (AgNW) ink with a relatively low conductive particle loading of 7 wt%. The AgNW ink involves simple formulation and comprises a biodegradable binder and a green solvent with no toxic surfactants in the ink formulation, making it an eco-friendly printing process. The formulated ink is suitable for printing on a diverse range of substrates such as polydimethylsiloxane (PDMS), polyethylene terephthalate (PET), polyimide (PI) tape, glass, and textiles. By tailoring the rheological behaviour of the ink and developing a one-step post-printing process, a minimum feature size of 50 μm and conductivity as high as 6.70 × 10 6 S m −1 was achieved. Use of a lower annealing temperature of 150 °C makes the process suitable for plastic substrates. A flexible textile heater and a wearable hydration sensor were fabricated using the reported AgNW ink to demonstrate its potential for wearable electronic applications.more » « less
-
Abstract The growing demand for flexible and wearable hybrid electronics has triggered the need for advanced manufacturing techniques with versatile printing capabilities. Complex ink formulations, use of surfactants/contaminants, limited source materials, and the need for high‐temperature heat treatments for sintering are major issues facing the current inkjet and aerosol printing methods. Here, the nanomanufacturing of flexible hybrid electronics (FHE) by dry printing silver and indium tin oxide on flexible substrates using a novel laser‐based additive nanomanufacturing process is reported. The electrical resistance of the printed lines is tailored during the print process by tuning the geometry and structure of the printed samples. Different FHE designs are fabricated and tested to check the performance of the devices. Mechanical reliability tests including cycling, bending, and stretching confirm the expected performance of the printed samples under different strain levels. This transformative liquid‐free process allows the on‐demand formation and in situ laser crystallization of nanoparticles for printing pure materials for future flexible and wearable electronics and sensors.more » « less
An official website of the United States government
