skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Mold‐Free Manufacturing of Highly Sensitive and Fast‐Response Pressure Sensors Through High‐Resolution 3D Printing and Conformal Oxidative Chemical Vapor Deposition Polymers
Abstract A new manufacturing paradigm is showcased to exclude conventional mold‐dependent manufacturing of pressure sensors, which typically requires a series of complex and expensive patterning processes. This mold‐free manufacturing leverages high‐resolution 3D‐printed multiscale microstructures as the substrate and a gas‐phase conformal polymer coating technique to complete the mold‐free sensing platform. The array of dome and spike structures with a controlled spike density of a 3D‐printed substrate ensures a large contact surface with pressures applied and extended linearity in a wider pressure range. For uniform coating of sensing elements on the microstructured surface, oxidative chemical vapor deposition is employed to deposit a highly conformal and conductive sensing element, poly(3,4‐ethylenedioxythiophene) at low temperatures (<60 °C). The fabricated pressure sensor reacts sensitively to various ranges of pressures (up to 185 kPa−1) depending on the density of the multiscale features and shows an ultrafast response time (≈36 µs). The mechanism investigations through the finite element analysis identify the effect of the multiscale structure on the figure‐of‐merit sensing performance. These unique findings are expected to be of significant relevance to technology that requires higher sensing capability, scalability, and facile adjustment of a sensor geometry in a cost‐effective manufacturing manner.  more » « less
Award ID(s):
2207302
PAR ID:
10641178
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
Volume:
35
Issue:
41
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Recent advancements in 3D printing technology have expanded its application to manufacturing pressure sensors. By harnessing the cost‐effectiveness, streamlined processes, and design flexibility of 3D printing, sensor fabrication can be customized to meet specific performance needs. Thus far, 3D printing in pressure sensor development has been primarily limited to creating molds for transferring patterns onto flexible substrates, restricting both material selection and sensor performance. To fully unlock the potential of 3D printing in advanced pressure sensor fabrication, it is crucial to establish effective design rules focused on enhancing the figure of merit performance. This study introduces a universal design strategy aimed at maintaining high sensitivity across a wide pressure range—a challenging feat, as sensitivity significantly decreases at higher pressures. Our approach centers on engineering the deformability of 3D‐printed structures, achieving a linear increase in contact area between sensor patterns and electrodes without reaching saturation. Sensors designed with high elongation and low stiffness exhibit consistent sensitivity of 162.5 kPa⁻¹ across a broad pressure range (0.05–300 kPa). Mechanistic investigations through finite element analysis confirm that engineered deformability is key to achieving this enhanced linear response, offering robust sensing capabilities for demanding applications such as deep‐sea and space exploration. 
    more » « less
  2. Carbas, Ricardo JC (Ed.)
    Low fiber-direction compressive strength is a well-recognized weakness of carbon fiber-reinforced polymer (CFRP) composites. When a CFRP is produced using 3D printing, the compressive strength is further degraded. To solve this issue, in this paper, a novel magnetic compaction force-assisted additive manufacturing (MCFA-AM) method is used to print CFRP laminates reinforced with carbon nanofiber (CNF) z-threads (i.e., ZT-CFRP). MCFA-AM utilizes a magnetic force to simultaneously levitate, deposit, and compact fast-curing CFRP prepregs in free space and quickly solidifies the CFRP laminate part without any mold nor supporting substrate plate; it effectively reduces the voids. The longitudinal compressive test was performed on five different sample types. ZT-CFRP/MCFA-AM samples were printed under two different magnetic compaction rolling pressures, i.e., 0.5 bar and 0.78 bar. Compared with the longitudinal compressive strength of a typical CFRP manufactured by the traditional out-of-autoclave–vacuum-bag-only (OOA-VBO) molding process at the steady-state pressure of 0.82 bar, the ZT-CFRP/MCFA-AM samples showed either comparable results (by −1.00% difference) or enhanced results (+7.42% improvement) by using 0.5 bar or 0.78 bar magnetic rolling pressures, respectively. 
    more » « less
  3. In this paper, we report the development of tailored 3D-structured (engineered) polymer-metal interfaces to create enhanced ‘engineered ionic polymer metal composite’ (eIPMC) sensors towards soft, self-powered, high sensitivity strain sensor applications. We introduce a novel advanced additive manufacturing approach to tailor the morphology of the polymer-electrode interfaces via inkjet-printed polymer microscale features. We hypothesize that these features can promote inhomogeneous strain within the material upon the application of external pressure, responsible for improved compression sensing performance. We formalize a minimal physics-based chemoelectromechanical model to predict the linear sensor behavior of eIPMCs in both open-circuit and short-circuit sensing conditions. The model accounts for polymer-electrode interfacial topography to define the inhomogeneous mechanical response driving electrochemical transport in the eIPMC. Electrochemical experiments demonstrate improved electrochemical properties of the inkjet-printed eIPMCs as compared to the standard IPMC sensors fabricated from Nafion polymer sheets. Similarly, compression sensing results show a significant increase in sensing performance of inkjet-printed eIPMC. We also introduce two alternative methods of eIPMC fabrication for sub-millimeter features, namely filament-based fused-deposition manufacturing and stencil printing, and experimentally demonstrate their improved sensing performance. Our results demonstrate increasing voltage output associated to increasing applied mechanical pressure and enhanced performance of the proposed eIPMC sensors against traditional IPMC based compression sensors. 
    more » « less
  4. In this paper, we report the development of tailored 3D-structured (engineered) polymer-metal interfaces to create enhanced 'engineered ionic polymer metal composite' (eIPMC) sensors towards soft, self-powered, high sensitivity strain sensor applications. We introduce a novel advanced additive manufacturing approach to tailor the morphology of the polymer-electrode interfaces via inkjet-printed polymer microscale features. We hypothesize that these features can promote inhomogeneous strain within the material upon the application of external pressure, responsible for improved compression sensing performance. We formalize a minimal physics-based chemoelectromechanical model to predict the linear sensor behavior of eIPMCs in both open-circuit and short-circuit sensing conditions. The model accounts for polymer-electrode interfacial topography to define the inhomogeneous mechanical response driving electrochemical transport in the eIPMC. Electrochemical experiments demonstrate improved electrochemical properties of the inkjet-printed eIPMCs as compared to the standard IPMC sensors fabricated from Nafion polymer sheets. Similarly, compression sensing results show a significant increase in sensing performance of inkjet-printed eIPMC. We also introduce two alternative methods of eIPMC fabrication for sub-millimeter features, namely filament-based fused-deposition manufacturing and stencil printing, and experimentally demonstrate their improved sensing performance. Our results demonstrate increasing voltage output associated to increasing applied mechanical pressure and enhanced performance of the proposed eIPMC sensors against traditional IPMC based compression sensors. 
    more » « less
  5. Abstract Though 3D printing shows potential in fabricating complex optical components rapidly, its poor surface quality and dimensional accuracy render it unqualified for industrial optics applications. The layer steps in the building direction and the pixelated steps on each layer's contour result in inevitable microscale defects on the 3D‐printed surface, far away from the nanoscale roughness required for optics. This paper reports a customized vat photopolymerization‐based lens printing process, integrating unfocused image projection and precision spin coating to solve lateral and vertical stair‐stepping defects. A precision aspherical lens with less than 1 nm surface roughness and 1 µm profile accuracy is demonstrated. The 3D‐printed convex lens achieves a maximum MTF resolution of 347.7 lp mm−1. A mathematical model is established to predict and control the spin coating process on 3D‐printed surfaces precisely. Leveraging this low‐cost yet highly robust and repeatable 3D printing process, the precision fabrication of multi‐scale spherical, aspherical, and axicon lenses are showcased with sizes ranging from 3 to 70 mm using high clear photocuring resins. Additionally, molds are also printed to form multi‐scale PDMS‐based lenses. 
    more » « less