skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 22, 2026

Title: Extended User Feedback– A Questionnaire for Usability Evaluation in XR
When developing an application for production, end-user questionnaires are a rapid way of acquiring user evaluations about the product’s usability. These questionnaires include topics such as the base of the application, user interface, and various ailments related to the application, to say the least. Multiple types of questionnaires and methods have been developed to assist developers with feedback acquisition. However, with such a wide-range of disciplines, there is not a standard used by all developers in the research community. Furthermore, as applications are delivered using various devices, such as mobile, desktop, and now XR, new questionnaires have arisen. Compiling these evaluations leads to a large number of questions (100+), a multitude of redundancies, and difficulty comparing related applications due to lack of a solidified system. Furthermore, XR development requires unique feedback that typical presentations of data and engagement do not contain. In this work, we create a concise subset of questions, on a 5-point likert scale, that remove redundancies and allows for comprehensive statistical analysis, allowing developers to measure differences in populations more readily.  more » « less
Award ID(s):
2532731 2437698
PAR ID:
10641410
Author(s) / Creator(s):
; ;
Publisher / Repository:
Proceedings of the 27th International Conference on Human-Computer Interaction
Date Published:
Format(s):
Medium: X
Location:
Gothenburg, Sweden
Sponsoring Org:
National Science Foundation
More Like this
  1. Many have predicted the future of the Web to be the integration of Web content with the real-world through technologies such as Augmented Reality (AR). This has led to the rise of Extended Reality (XR) Web Browsers used to shorten the long AR application development and deployment cycle of native applications especially across different platforms. As XR Browsers mature, we face new challenges related to collaborative and multi-user applications that span users, devices, and machines. These collaborative XR applications require: (1) networking support for scaling to many users, (2) mechanisms for content access control and application isolation, and (3) the ability to host application logic near clients or data sources to reduce application latency. In this paper, we present the design and evaluation of the AR Edge Networking Architecture (ARENA) which is a platform that simplifies building and hosting collaborative XR applications on WebXR capable browsers. ARENA provides a number of critical components including: a hierarchical geospatial directory service that connects users to nearby servers and content, a token-based authentication system for controlling user access to content, and an application/service runtime supervisor that can dispatch programs across any network connected device. All of the content within ARENA exists as endpoints in a PubSub scene graph model that is synchronized across all users. We evaluate ARENA in terms of client performance as well as benchmark end-to-end response-time as load on the system scales. We show the ability to horizontally scale the system to Internet-scale with scenes containing hundreds of users and latencies on the order of tens of milliseconds. Finally, we highlight projects built using ARENA and showcase how our approach dramatically simplifies collaborative multi-user XR development compared to monolithic approaches. 
    more » « less
  2. This article provides a systematic review of research related to Human–Computer Interaction techniques supporting training and learning in various domains including medicine, healthcare, and engineering. The focus is on HCI techniques involving Extended Reality (XR) technology which encompasses Virtual Reality, Augmented Reality, and Mixed Reality. HCI-based research is assuming more importance with the rapid adoption of XR tools and techniques in various training and learning contexts including education. There are many challenges in the adoption of HCI approaches, which results in a need to have a comprehensive and systematic review of such HCI methods in various domains. This article addresses this need by providing a systematic literature review of a cross-s Q1 ection of HCI approaches involving proposed so far. The PRISMA-guided search strategy identified 1156 articles for abstract review. Irrelevant abstracts were discarded. The whole body of each article was reviewed for the remaining articles, and those that were not linked to the scope of our specific issue were also eliminated. Following the application of inclusion/exclusion criteria, 69 publications were chosen for review. This article has been divided into the following sections: Introduction; Research methodology; Literature review; Threats of validity; Future research and Conclusion. Detailed classifications (pertaining to HCI criteria and concepts, such as affordance; training, and learning techniques) have also been included based on different parameters based on the analysis of research techniques adopted by various investigators. The article concludes with a discussion of the key challenges for this HCI area along with future research directions. A review of the research outcomes from these publications underscores the potential for greater success when such HCI-based approaches are adopted during such 3D-based training interactions. Such a higher degree of success may be due to the emphasis on the design of userfriendly (and user-centric) training environments, interactions, and processes that positively impact the cognitive abilities of users and their respective learning/training experiences. We discovered data validating XR-HCI as an ascending method that brings a new paradigm by enhancing skills and safety while reducing costs and learning time through replies to three exploratory study questions. We believe that the findings of this study will aid academics in developing new research avenues that will assist XR-HCI applications to mature and become more widely adopted. 
    more » « less
  3. Entity–Component–System (ECS) architectures are fundamental to many systems for developing extended reality (XR) applications. These applications often contain complex scenes and require intricately connected application logic to connect components together, making debugging and analysis difficult. Graph-based tools have been created to show actions in ECS-based scene hierarchies, but few address interactions that go beyond traditional hierarchical communication. To address this, we present an XR GUI for Mercury (a toolkit to handle cross-component ECS communication) that allows developers to view and edit relationships and interactions between scene entities in Mercury. 
    more » « less
  4. The educational applications of extended reality (XR) modalities, including virtual reality (VR), augmented reality (AR), and mixed reality (MR), have increased significantly over the last ten years. Many educators within the Architecture, Engineering, and Construction (AEC) related degree programs see student benefits that could be derived from bringing these modalities into classrooms, which include but are not limited to: a better understanding of each of the subdisciplines and the coordination necessary between them, visualizing oneself as a professional in AEC, and visualization of difficult concepts to increase engagement, self-efficacy, and learning. These benefits, in turn, help recruitment and retention efforts for these degree programs. However, given the number of technologies available and the fact that they quickly become outdated, there is confusion about the definitions of the different XR modalities and their unique capabilities. This lack of knowledge, combined with limited faculty time and lack of financial resources, can make it overwhelming for educators to choose the right XR modality to accomplish particular educational objectives. There is a lack of guidance in the literature for AEC educators to consider various factors that affect the success of an XR intervention. Grounded in a comprehensive literature review and the educational framework of the Model of Domain Learning, this paper proposes a decision-making framework to help AEC educators select the appropriate technologies, platforms, and devices to use for various educational outcomes (e.g., learning, interest generation, engagement) considering factors such as budget, scalability, space/equipment needs, and the potential benefits and limitations of each XR modality. To this end, a comprehensive review of the literature was performed to decipher various definitions of XR modalities and how they have been previously utilized in AEC Education. The framework was then successfully validated at a summer camp in the School of Building Construction at Georgia Institute of Technology, highlighting the importance of using appropriate XR technologies depending on the educational context. 
    more » « less
  5. Recently, the use of extended reality (XR) systems has been on the rise, to tackle various domains such as training, education, safety, etc. With the recent advances in augmented reality (AR), virtual reality (VR) and mixed reality (MR) technologies and ease of availability of high-end, commercially available hardware, the manufacturing industry has seen a rise in the use of advanced XR technologies to train its workforce. While several research publications exist on applications of XR in manufacturing training, a comprehensive review of recent works and applications is lacking to present a clear progress in using such advance technologies. To this end, we present a review of the current state-of-the-art of use of XR technologies in training personnel in the field of manufacturing. First, we put forth the need of XR in manufacturing. We then present several key application domains where XR is being currently applied, notably in maintenance training and in performing assembly task. We also reviewed the applications of XR in other vocational domains and how they can be leveraged in the manufacturing industry. We finally present some current barriers to XR adoption in manufacturing training and highlight the current limitations that should be considered when looking to develop and apply practical applications of XR. 
    more » « less