skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 2, 2026

Title: Deformation controlled fluid mass-transfer processes in ancient orogens
Despite abundant empirical evidence, the details of coupled deformation and mass transfer processes within a framework of the crustal architecture of ancient orogens remains enigmatic. Geophysical imaging of the Larder Lake-Cadillac deformation zone, a well-endowed crustal-scale fault system in the Superior Province of the Canadian Shield, characterises the crustal architecture and fault geometry of the system through the lower crust. By comparing the geophysically determined structure of the Larder Lake-Cadillac deformation zone to stress changes induced by Archean (peak orogeny) rupture of the fault system, we show domains of earthquake-triggered deformation coincide with the geophysically imaged low resistivity zones. These low resistivity zones likely formed due to mineral bearing fluid migration from underlying fertile source zones to downstream (shallower) crustal reservoirs and, ultimately, near surface traps. The multi-disciplinary approach identifies the syntectonic mass-transfer processes and fluid pathways, providing an interpretive framework for unraveling the geophysical manifestation of the deformation controlled processes responsible for upflow of metalliferous fluids that may result in ore deposit formation in collisional orogens.  more » « less
Award ID(s):
2310920 1822146
PAR ID:
10642203
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
EGU General Assembly 2025. Vienna, Austria & Online (April 27-May 2, 2025)
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Despite abundant empirical evidence, the details of coupled deformation and mass transfer processes within a framework of the crustal architecture of ancient orogens remains enigmatic. Geophysical imaging of the Larder Lake‐Cadillac deformation zone, a well‐endowed crustal‐scale fault system in the Superior Province of the Canadian Shield, characterizes the crustal architecture and fault geometry of the system through the lower crust. By comparing the geophysically determined structure of the Larder Lake‐Cadillac deformation zone to stress changes induced by Archean (peak orogeny) rupture of the fault system, we show domains of earthquake‐triggered deformation coincide with the geophysically imaged low resistivity zones. These low resistivity zones likely formed due to Archean mineral bearing fluid migration from underlying fertile source zones to downstream (shallower) crustal reservoirs and, ultimately, near surface traps. The multi‐disciplinary approach identifies the syntectonic mass‐transfer processes and mineral bearing fluid pathways, providing an interpretive framework for unraveling the geophysical manifestation of the deformation controlled processes responsible for upflow of metalliferous fluids that may result in ore deposit formation in collisional orogens. 
    more » « less
  2. Abstract Subduction zones are host to some of the largest and most devastating geohazards on Earth. The magnitude of these hazards is often measured by the amount of energy they release over short periods of time, which itself depends on how much stored energy is available for the geologic processes that drive these hazards. By considering the energy transfer among processes within subduction zones, we can identify the energy inputs and outputs to the system and estimate the stored energy. Due to the multiscale nature of subduction zone processes, developing an energy budget of subduction zone hazards requires integrating a wide range of geologic and geophysical field, laboratory, and modeling studies. We present a framework for developing mechanical energy budgets of upper crustal deformation that considers processes within the magmatic system, at the subduction zone interface, distributed and localized deformation between the arc and trench, and surface processes that erode, transport, and store sediments. The subduction energy budget framework provides a way to integrate data and model results to explore interactions between diverse processes. Because fault mechanics, sediment transport and magmatic processes within subduction zones do not act in isolation, we gain insights by considering the common energetic elements of the subduction zone system. Building energy budgets reveals gaps in our understanding of subduction zone processes, and thus highlights opportunities for new interdisciplinary research on subduction zone processes that can inform hazard potential. 
    more » « less
  3. Abstract Erebus volcano, Antarctica, with its persistent phonolite lava lake, is a classic example of an evolved, CO 2 -rich rift volcano. Seismic studies provide limited images of the magmatic system. Here we show using magnetotelluric data that a steep, melt-related conduit of low electrical resistivity originating in the upper mantle undergoes pronounced lateral re-orientation in the deep crust before reaching shallower magmatic storage and the summit lava lake. The lateral turn represents a structural fault-valve controlling episodic flow of magma and CO 2 vapour, which replenish and heat the high level phonolite differentiation zone. This magmatic valve lies within an inferred, east-west structural trend forming part of an accommodation zone across the southern termination of the Terror Rift, providing a dilatant magma pathway. Unlike H 2 O-rich subduction arc volcanoes, CO 2 -dominated Erebus geophysically shows continuous magmatic structure to shallow crustal depths of < 1 km, as the melt does not experience decompression-related volatile supersaturation and viscous stalling. 
    more » « less
  4. Abstract The Pāpaku Fault Zone, drilled at International Ocean Discovery Program (IODP) Site U1518, is an active splay fault in the frontal accretionary wedge of the Hikurangi Margin. In logging‐while‐drilling data, the 33‐m‐thick fault zone exhibits mixed modes of deformation associated with a trend of downward decreasing density,P‐wave velocity, and resistivity. Methane hydrate is observed from ~30 to 585 m below seafloor (mbsf), including within and surrounding the fault zone. Hydrate accumulations are vertically discontinuous and occur throughout the entire logged section at low to moderate saturation in silty and sandy centimeter‐thick layers. We argue that the hydrate distribution implies that the methane is not sourced from fluid flow along the fault but instead by local diffusion. This, combined with geophysical observations and geochemical measurements from Site U1518, suggests that the fault is not a focused migration pathway for deeply sourced fluids and that the near‐seafloor Pāpaku Fault Zone has little to no active fluid flow. 
    more » « less
  5. null (Ed.)
    Fault zones record the dynamic motion of Earth’s crust and are sites of heat exchange, fluid–rock interaction, and mineralization. Episodic or long-lived fluid flow, frictional heating, and/or deformation can induce open-system chemical behavior and make dating fault zone processes challenging. Iron oxides are common in a variety of geologic settings, including faults and fractures, and can grow at surface-to magmatic temperatures. Recently, iron oxide (U–Th)/He thermochronology, coupled with microtextural and trace element analyses, has enabled new avenues of research into the timing and nature of fluid–rock interactions and deformation. These constraints are important for understanding fault zone evolution in space and time. 
    more » « less