skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 1, 2025

Title: Predicting the Onset of Subglacial Drainage Channels
The sliding speed of glaciers depends strongly on the water pressure at the ice‐sediment interface, which is controlled by the efficiency of water transport through a subglacial hydrological system. The least efficient component of the system consists of “distributed” flow everywhere beneath the ice, whereas the “channelized” drainage through large, thermally eroded conduits is more efficient. To understand the conditions under which the subglacial network channelizes, we perform a linear stability analysis of distributed flow, considering competition between thermal erosion and viscous ice collapse. The calculated growth rate gives a stability criterion, describing the minimum subglacial meltwater flux needed for channels to form, but also indicates the tendency to generate infinitely narrow channels in existing models. We demonstrate the need to include lateral heat diffusion when modeling melt incision to resolve channel widths, which allows continuum models to recover Röthlisberger channel behavior. We also show that low numerical resolution can suppress channel formation and lead to overestimates of water pressure. Our derived channelization criterion can be used to predict the character of subglacial hydrological systems without recourse to numerical simulations, with practical implications for understanding changes in ice velocity due to changes in surface melt runoff.  more » « less
Award ID(s):
2012958
PAR ID:
10642210
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
American Geophysical Union
Date Published:
Journal Name:
Journal of Geophysical Research: Earth Surface
Volume:
129
Issue:
12
ISSN:
2169-9003
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Ice-sheet models used to predict sea-level rise often neglect subglacial hydrology. However, theory and observations suggest that ice flow and subglacial water flow are bidirectionally coupled: ice geometry affects hydraulic potential, hydraulic potential modulates basal shear stress via the basal water pressure, and ice flow advects the subglacial drainage system. This coupling could impact rates of ice mass change but remains poorly understood. We develop a coupled ice–subglacial-hydrology model to investigate the effects of coupling on the long-term evolution of marine-terminating ice sheets. We combine a one-dimensional channelized subglacial hydrology model with a depth-integrated marine-ice-sheet model, incorporating each component of the coupling listed above, yielding a set of differential equations that we solve using a finite-difference, implicit time-stepping approach. We conduct a series of experiments with this model, using either bidirectional or unidirectional coupling. These experiments generate profiles of channel cross-sectional area, channel flow rate, channel effective pressure, ice thickness, and ice velocity. We discuss how the profiles shape one another, resulting in the effective pressure reaching a local maximum in a region near the grounding line. We also describe the impact of bidirectional coupling on the transient retreat of ice sheets through a comparison of our coupled model with ice-flow models that have imposed static basal conditions. We find that including coupled subglacial hydrology leads to grounding-line retreat that is virtually absent when static basal conditions are assumed. This work highlights the role time-evolving subglacial drainage may have in ice-sheet change and informs efforts to include it in ice-sheet models. This work also supplies a physical basis for a commonly used parameterization which assumes that the subglacial water pressure is set by the bed's depth beneath the sea surface. 
    more » « less
  2. Basal channels, which are troughs carved into the undersides of ice shelves by buoyant plumes of water, are modulators of ice-shelf basal melt and structural stability. In this study, we track the evolution of 12 large basal channels beneath ice shelves of the Amundsen and Bellingshausen seas region in West Antarctica using the Landsat record since its start in the 1970s through 2020. We observe examples of channel growth, interactions with ice-shelf features, and systematic changes in sinuosity that give insight into the life cycles of basal channels. We use the last two decades of the record, combined with contemporary ice-flow velocity datasets, to separate channel-path evolution into components related to advection by ice flow and those controlled by other forcings, such as ocean melt or surface accumulation. Our results show that ice-flow-independent lateral channel migration is overwhelmingly to the left when viewed down-flow, suggesting that it is dominated by Coriolis-influenced ocean melt. By applying a model of channel-path evolution dominantly controlled by ice flow and ocean melt, we show that the majority of channels surveyed exhibit non-steady behavior that serves as a novel proxy for increased ocean forcing in West Antarctica starting at least in the early 1970s. 
    more » « less
  3. Abstract Basal channels, which form where buoyant plumes of ocean water and meltwater carve troughs upwards into ice-shelf bases, are widespread on Antarctic ice shelves. The formation of these features modulates ice-shelf basal melt by influencing the flow of buoyant plumes, and influences structural stability through concentration of strain and interactions with fractures. Because of these effects, and because basal channels can change rapidly, on timescales similar to those of ice-shelf evolution, constraining the impacts of basal channels on ice shelves is necessary for predicting future ice-shelf destabilization and retreat. We suggest that future research priorities should include constraining patterns and rates of basal channel change, determining mechanisms and detailed patterns of basal melt, and quantifying the influence that channel-related fractures have on ice-shelf stability. 
    more » « less
  4. Abstract The flow speed of the Greenland Ice Sheet changes dramatically in inland regions when surface meltwater drains to the bed. But ice-sheet discharge to the ocean is dominated by fast-flowing outlet glaciers, where the effect of increasing surface melt on annual discharge is unknown. Observations of a supraglacial lake drainage at Helheim Glacier, and a consequent velocity pulse propagating down-glacier, provide a natural experiment for assessing the impact of changes in injected meltwater, and allow us to interrogate the subglacial hydrological system. We find a highly efficient subglacial drainage system, such that summertime lake drainage has little net effect on ice discharge. Our results question the validity of common remote-sensing approaches for inferring subglacial conditions, knowledge of which is needed for improved projections of sea-level rise. 
    more » « less
  5. Abstract Glacier surges are opportunities to study large amplitude changes in ice velocities and accompanying links to subglacial hydrology. Although the surge phase is generally explained as a disruption in the glacier's ability to drain water from the bed, the extent and duration of this disruption remain difficult to observe. Here we present a combination of in situ and remotely sensed observations of subglacial water discharge and evacuation during the latter half of an active surge and subsequent quiescent period. Our data reveal intermittently efficient subglacial drainage prior to surge termination, showing that glacier surges can persist in the presence of channel-like subglacial drainage and that successive changes in subglacial drainage efficiency can modulate active phase ice dynamics at timescales shorter than the surge cycle. Our observations favor an explanation of fast ice flow sustained through an out-of-equilibrium drainage system and a basal water surplus rather than binary switching between states in drainage efficiency. 
    more » « less