skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Search-To-Decision Reductions for Kolmogorov Complexity
{"Abstract":["A long-standing open problem dating back to the 1960s is whether there exists a search-to-decision reduction for the time-bounded Kolmogorov complexity problem - that is, the problem of determining whether the length of the shortest time-t program generating a given string x is at most s.\r\nIn this work, we consider the more "robust" version of the time-bounded Kolmogorov complexity problem, referred to as the GapMINKT problem, where given a size bound s and a running time bound t, the goal is to determine whether there exists a poly(t,|x|)-time program of length s+O(log |x|) that generates x. We present the first non-trivial search-to-decision reduction R for the GapMINKT problem; R has a running-time bound of 2^{ε n} for any ε > 0 and additionally only queries its oracle on "thresholds" s of size s+O(log |x|). As such, we get that any algorithm with running-time (resp. circuit size) 2^{α s} poly(|x|,t,s) for solving GapMINKT (given an instance (x,t,s), yields an algorithm for finding a witness with running-time (resp. circuit size) 2^{(α+ε) s} poly(|x|,t,s).\r\nOur second result is a polynomial-time search-to-decision reduction for the time-bounded Kolmogorov complexity problem in the average-case regime. Such a reduction was recently shown by Liu and Pass (FOCS'20), heavily relying on cryptographic techniques. Our reduction is more direct and additionally has the advantage of being length-preserving, and as such also applies in the exponential time/size regime.\r\nA central component in both of these results is the use of Kolmogorov and Levin’s Symmetry of Information Theorem."]}  more » « less
Award ID(s):
2149305
PAR ID:
10643224
Author(s) / Creator(s):
;
Editor(s):
Santhanam, Rahul
Publisher / Repository:
Schloss Dagstuhl – Leibniz-Zentrum für Informatik
Date Published:
Volume:
300
ISSN:
1868-8969
Page Range / eLocation ID:
34:1-34:20
Subject(s) / Keyword(s):
Kolmogorov complexity search to decision Theory of computation → Computational complexity and cryptography
Format(s):
Medium: X Size: 20 pages; 781484 bytes Other: application/pdf
Size(s):
20 pages 781484 bytes
Sponsoring Org:
National Science Foundation
More Like this
  1. Kumar, Amit; Ron-Zewi, Noga (Ed.)
    {"Abstract":["The relationships between various meta-complexity problems are not well understood in the worst-case regime, including whether the search version is harder than the decision version, whether the hardness scales with the "threshold", and how the hardness of different meta-complexity problems relate to one another, and to the task of function inversion.\r\nIn this work, we present resolutions to some of these questions with respect to the black-box analog of these problems. In more detail, let MK^t_M P[s] denote the language consisting of strings x with K_{M}^t(x) < s(|x|), where K_M^t(x) denotes the t-bounded Kolmogorov complexity of x with M as the underlying (Universal) Turing machine, and let search-MK^t_M P[s] denote the search version of the same problem.\r\nWe show that if for every Universal Turing machine U there exists a 2^{α n}poly(n)-size U-oracle aided circuit deciding MK^t_U P[n-O(1)], then for every function s, and every not necessarily universal Turing machine M, there exists a 2^{α s(n)}poly(n)-size M-oracle aided circuit solving search-MK^t_M P[s(n)]; this in turn yields circuits of roughly the same size for both the Minimum Circuit Size Problem (MCSP), and the function inversion problem, as they can be thought of as instantiating MK^t_M P with particular choices of (a non-universal) TMs M (the circuit emulator for the case of MCSP, and the function evaluation in the case of function inversion).\r\nAs a corollary of independent interest, we get that the complexity of black-box function inversion is (roughly) the same as the complexity of black-box deciding MK^t_U P[n-O(1)] for any universal TM U; that is, also in the worst-case regime, black-box function inversion is "equivalent" to black-box deciding MK^t_U P."]} 
    more » « less
  2. Guruswami, Venkatesan (Ed.)
    The Perebor (Russian for "brute-force search") conjectures, which date back to the 1950s and 1960s are some of the oldest conjectures in complexity theory. The conjectures are a stronger form of the NP ≠ P conjecture (which they predate) and state that for "meta-complexity" problems, such as the Time-bounded Kolmogorov complexity Problem, and the Minimum Circuit Size Problem, there are no better algorithms than brute force search. In this paper, we disprove the non-uniform version of the Perebor conjecture for the Time-Bounded Kolmogorov complexity problem. We demonstrate that for every polynomial t(⋅), there exists of a circuit of size 2^{4n/5+o(n)} that solves the t(⋅)-bounded Kolmogorov complexity problem on every instance. Our algorithm is black-box in the description of the Universal Turing Machine U employed in the definition of Kolmogorov Complexity and leverages the characterization of one-way functions through the hardness of the time-bounded Kolmogorov complexity problem of Liu and Pass (FOCS'20), and the time-space trade-off for one-way functions of Fiat and Naor (STOC'91). We additionally demonstrate that no such black-box algorithm can have circuit size smaller than 2^{n/2-o(n)}. Along the way (and of independent interest), we extend the result of Fiat and Naor and demonstrate that any efficiently computable function can be inverted (with probability 1) by a circuit of size 2^{4n/5+o(n)}; as far as we know, this yields the first formal proof that a non-trivial circuit can invert any efficient function. 
    more » « less
  3. Gørtz, Inge Li; Farach-Colton, Martin; Puglisi, Simon J; Herman, Grzegorz (Ed.)
    The k-Detour problem is a basic path-finding problem: given a graph G on n vertices, with specified nodes s and t, and a positive integer k, the goal is to determine if G has an st-path of length exactly dist(s,t) + k, where dist(s,t) is the length of a shortest path from s to t. The k-Detour problem is NP-hard when k is part of the input, so researchers have sought efficient parameterized algorithms for this task, running in f(k)poly(n) time, for f(⋅) as slow-growing as possible. We present faster algorithms for k-Detour in undirected graphs, running in 1.853^k poly(n) randomized and 4.082^kpoly(n) deterministic time. The previous fastest algorithms for this problem took 2.746^k poly(n) randomized and 6.523^k poly(n) deterministic time [Bezáková-Curticapean-Dell-Fomin, ICALP 2017]. Our algorithms use the fact that detecting a path of a given length in an undirected graph is easier if we are promised that the path belongs to what we call a "bipartitioned" subgraph, where the nodes are split into two parts and the path must satisfy constraints on those parts. Previously, this idea was used to obtain the fastest known algorithm for finding paths of length k in undirected graphs [Björklund-Husfeldt-Kaski-Koivisto, JCSS 2017], intuitively by looking for paths of length k in randomly bipartitioned subgraphs. Our algorithms for k-Detour stem from a new application of this idea, which does not involve choosing the bipartitioned subgraphs randomly. Our work has direct implications for the k-Longest Detour problem, another related path-finding problem. In this problem, we are given the same input as in k-Detour, but are now tasked with determining if G has an st-path of length at least dist(s,t)+k. Our results for k-Detour imply that we can solve k-Longest Detour in 3.432^k poly(n) randomized and 16.661^k poly(n) deterministic time. The previous fastest algorithms for this problem took 7.539^k poly(n) randomized and 42.549^k poly(n) deterministic time [Fomin et al., STACS 2022]. 
    more » « less
  4. We give the first reconstruction algorithm for decision trees: given queries to a function f that is opt-close to a size-s decision tree, our algorithm provides query access to a decision tree T where: - T has size S := s^O((log s)²/ε³); - dist(f,T) ≤ O(opt)+ε; - Every query to T is answered with poly((log s)/ε)⋅ log n queries to f and in poly((log s)/ε)⋅ n log n time. This yields a tolerant tester that distinguishes functions that are close to size-s decision trees from those that are far from size-S decision trees. The polylogarithmic dependence on s in the efficiency of our tester is exponentially smaller than that of existing testers. Since decision tree complexity is well known to be related to numerous other boolean function properties, our results also provide a new algorithm for reconstructing and testing these properties. 
    more » « less
  5. Ker-I Ko was among the first people to recognize the importance of resource-bounded Kolmogorov complexity as a tool for better understanding the structure of complexity classes. In this brief informal reminiscence, I review the milieu of the early 1980’s that caused an up-welling of interest in resource-bounded Kolmogorov complexity, and then I discuss some more recent work that sheds additional light on the questions related to Kolmogorov complexity that Ko grappled with in the 1980’s and 1990’s. In particular, I include a detailed discussion of Ko’s work on the question of whether it is NP-hard to determine the time-bounded Kolmogorov complexity of a given string. This problem is closely connected with the Minimum Circuit Size Problem (MCSP), which is central to several contemporary investigations in computational complexity theory. 
    more » « less