Abstract Near‐term freshwater forecasts, defined as sub‐daily to decadal future predictions of a freshwater variable with quantified uncertainty, are urgently needed to improve water quality management as freshwater ecosystems exhibit greater variability due to global change. Shifting baselines in freshwater ecosystems due to land use and climate change prevent managers from relying on historical averages for predicting future conditions, necessitating near‐term forecasts to mitigate freshwater risks to human health and safety (e.g., flash floods, harmful algal blooms) and ecosystem services (e.g., water‐related recreation and tourism). To assess the current state of freshwater forecasting and identify opportunities for future progress, we synthesized freshwater forecasting papers published in the past 5 years. We found that freshwater forecasting is currently dominated by near‐term forecasts of waterquantityand that near‐term waterqualityforecasts are fewer in number and in the early stages of development (i.e., non‐operational) despite their potential as important preemptive decision support tools. We contend that more freshwater quality forecasts are critically needed and that near‐term water quality forecasting is poised to make substantial advances based on examples of recent progress in forecasting methodology, workflows, and end‐user engagement. For example, current water quality forecasting systems can predict water temperature, dissolved oxygen, and algal bloom/toxin events 5 days ahead with reasonable accuracy. Continued progress in freshwater quality forecasting will be greatly accelerated by adapting tools and approaches from freshwater quantity forecasting (e.g., machine learning modeling methods). In addition, future development of effective operational freshwater quality forecasts will require substantive engagement of end users throughout the forecast process, funding, and training opportunities. Looking ahead, near‐term forecasting provides a hopeful future for freshwater management in the face of increased variability and risk due to global change, and we encourage the freshwater scientific community to incorporate forecasting approaches in water quality research and management.
more »
« less
Near‐term lake water temperature forecasts can be used to anticipate the ecological dynamics of freshwater species
Abstract Near‐term ecological forecasting can be used to improve operational resource management in freshwater ecosystems. Here, we developed a framework that uses water temperature forecasting as a tool to predict the migrations of Atlantic salmon (Salmo salar) and European eel (Anguilla anguilla) between freshwater and the sea. We used historical observations of lake water temperature and fish migrations from an internationally important long‐term monitoring site (the Burrishoole catchment, Ireland) to generate daily probabilistic predictions (0%–100%) of when relatively large numbers of fish migrate. For this, we produced daily lake water temperature forecasts that extended up to 34 days into the future using Forecasting Lake and Reservoir Ecosystems (FLARE), an open‐source ensemble‐based forecasting system. We used this system to forecast lake water temperature conditions associated with percentile‐based fish migrations. Two metrics, P66 and P95, were used to indicate days with migrations in excess of 66% and 95%, respectively, of the historical daily fish counts. The results were first validated against water temperature observations, with an overall root mean squared error (RMSE) of 0.97°C. Our forecasts outperformed two other possible water temperature forecasting approaches, using site climatology (1.36°C) and site persistence (1.19°C). The predictions for fish migrations performed better for the P66 metric than for the more extreme P95 metric based on the continuous ranked probability score (CRPS), and the best results were obtained for the salmon downstream migration. This forecasting approach with quantified uncertainty levels has the potential to assist decision making, especially in the face of increased risks for these species. We conclude by discussing the scalability of the framework to other settings as a tool aimed at supporting management practices in real time.
more »
« less
- PAR ID:
- 10643683
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Ecosphere
- Volume:
- 16
- Issue:
- 7
- ISSN:
- 2150-8925
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Ecosystems around the globe are experiencing changes in both the magnitude and fluctuations of environmental conditions due to land use and climate change. In response, ecologists are increasingly using near‐term, iterative ecological forecasts to predict how ecosystems will change in the future. To date, many near‐term, iterative forecasting systems have been developed using high temporal frequency (minute to hourly resolution) data streams for assimilation. However, this approach may be cost‐prohibitive or impossible for forecasting ecological variables that lack high‐frequency sensors or have high data latency (i.e., a delay before data are available for modeling after collection). To explore the effects of data assimilation frequency on forecast skill, we developed water temperature forecasts for a eutrophic drinking water reservoir and conducted data assimilation experiments by selectively withholding observations to examine the effect of data availability on forecast accuracy. We used in situ sensors, manually collected data, and a calibrated water quality ecosystem model driven by forecasted weather data to generate future water temperature forecasts using Forecasting Lake and Reservoir Ecosystems (FLARE), an open source water quality forecasting system. We tested the effect of daily, weekly, fortnightly, and monthly data assimilation on the skill of 1‐ to 35‐day‐ahead water temperature forecasts. We found that forecast skill varied depending on the season, forecast horizon, depth, and data assimilation frequency, but overall forecast performance was high, with a mean 1‐day‐ahead forecast root mean square error (RMSE) of 0.81°C, mean 7‐day RMSE of 1.15°C, and mean 35‐day RMSE of 1.94°C. Aggregated across the year, daily data assimilation yielded the most skillful forecasts at 1‐ to 7‐day‐ahead horizons, but weekly data assimilation resulted in the most skillful forecasts at 8‐ to 35‐day‐ahead horizons. Within a year, forecasts with weekly data assimilation consistently outperformed forecasts with daily data assimilation after the 8‐day forecast horizon during mixed spring/autumn periods and 5‐ to 14‐day‐ahead horizons during the summer‐stratified period, depending on depth. Our results suggest that lower frequency data (i.e., weekly) may be adequate for developing accurate forecasts in some applications, further enabling the development of forecasts broadly across ecosystems and ecological variables without high‐frequency sensor data.more » « less
-
Near‐term, iterative ecological forecasts can be used to help understand and proactively manage ecosystems. To date, more forecasts have been developed for aquatic ecosystems than other ecosystems worldwide, likely motivated by the pressing need to conserve these essential and threatened ecosystems and increasing the availability of high‐frequency data. Forecasters have implemented many different modeling approaches to forecast freshwater variables, which have demonstrated promise at individual sites. However, a comprehensive analysis of the performance of varying forecast models across multiple sites is needed to understand broader controls on forecast performance. Forecasting challenges (i.e., community‐scale efforts to generate forecasts while also developing shared software, training materials, and best practices) present a useful platform for bridging this gap to evaluate how a range of modeling methods perform across axes of space, time, and ecological systems. Here, we analyzed forecasts from the aquatics theme of the National Ecological Observatory Network (NEON) Forecasting Challenge hosted by the Ecological Forecasting Initiative. Over 100,000 probabilistic forecasts of water temperature and dissolved oxygen concentration for 1–30 days ahead across seven NEON‐monitored lakes were submitted in 2023. We assessed how forecast performance varied among models with different structures, covariates, and sources of uncertainty relative to baseline null models. A similar proportion of forecast models were skillful across both variables (34%–40%), although more individual models outperformed the baseline models in forecasting water temperature (10 models out of 29) than dissolved oxygen (6 models out of 15). These top performing models came from a range of classes and structures. For water temperature, we found that forecast skill degraded with increases in forecast horizons, process‐based models, and models that included air temperature as a covariate generally exhibited the highest forecast performance, and that the most skillful forecasts often accounted for more sources of uncertainty than the lower performing models. The most skillful forecasts were for sites where observations were most divergent from historical conditions (resulting in poor baseline model performance). Overall, the NEON Forecasting Challenge provides an exciting opportunity for a model intercomparison to learn about the relative strengths of a diverse suite of models and advance our understanding of freshwater ecosystem predictability.more » « less
-
A database of in situ water temperatures for large inland lakes across the coterminous United StatesAbstract Water temperature dynamics in large inland lakes are interrelated with internal lake physics, ecosystem function, and adjacent land surface meteorology and climatology. Models for simulating and forecasting lake temperatures often rely on remote sensing andin situdata for validation.In situmonitoring platforms have the benefit of providing relatively precise measurements at multiple lake depths, but are often sparser (temporally and spatially) than remote sensing data. Here, we address the challenge of synthesizingin situlake temperature data by creating a standardized database of near-surface and subsurface measurements from 134 sites across 29 large North American lakes, with the primary goal of supporting an ongoing lake model validation study. We utilize data sources ranging from federal agency repositories to local monitoring group samples, with a collective historical record spanning January 1, 2000 through December 31, 2022. Our database has direct utility for validating simulations and forecasts from operational numerical weather prediction systems in large lakes whose extensive surface area may significantly influence nearby weather and climate patterns.more » « less
-
Abstract Water temperature forecasting in lakes and reservoirs is a valuable tool to manage crucial freshwater resources in a changing and more variable climate, but previous efforts have yet to identify an optimal modeling approach. Here, we demonstrate the first multi‐model ensemble (MME) reservoir water temperature forecast, a forecasting method that combines individual model strengths in a single forecasting framework. We developed two MMEs: a three‐model process‐based MME and a five‐model MME that includes process‐based and empirical models to forecast water temperature profiles at a temperate drinking water reservoir. We found that the five‐model MME improved forecast performance by 8%–30% relative to individual models and the process‐based MME, as quantified using an aggregated probabilistic skill score. This increase in performance was due to large improvements in forecast bias in the five‐model MME, despite increases in forecast uncertainty. High correlation among the process‐based models resulted in little improvement in forecast performance in the process‐based MME relative to the individual process‐based models. The utility of MMEs is highlighted by two results: (a) no individual model performed best at every depth and horizon (days in the future), and (b) MMEs avoided poor performances by rarely producing the worst forecast for any single forecasted period (<6% of the worst ranked forecasts over time). This work presents an example of how existing models can be combined to improve water temperature forecasting in lakes and reservoirs and discusses the value of utilizing MMEs, rather than individual models, in operational forecasts.more » « less
An official website of the United States government

