This study examines the ergonomic impact of augmented reality (AR) technologies in educational contexts, with a focus on understanding how prolonged AR engagement affects postural dynamics and physical demands on users. By analyzing slouching scores alongside NASA Task Load Index (TLX) Physical Demand (PD) values, we assess the physical strain experienced by participants during the initial modules of an AR-based lecture series. Our findings demonstrate a notable decline in slouching scores as participants progress through the lecture modules, indicating increased postural deviations. To quantify these effects, we developed a regression model that effectively predicts the physical demands imposed by various AR modules, based on the observed slouching scores.
more »
« less
Measuring Fatigue Dynamics of Augmented Reality in the Digital Learning Era Using Motion Capture Data
In this digital learning era, Augmented Reality (AR) has become a significant driver of innovative user experience. However, the ergonomic implications of AR, particularly regarding the postural fatigue dynamics, have not been comprehensively addressed. This study investigates the correlation between prolonged AR engagement and the onset of postural fatigue, characterized by a backward shift in the center of mass (COM). Employing motion capture technology alongside cognitive load assessment tools such as the NASA Task Load Index and HoloLens eye-tracking, we seek to quantify the relationship between user posture, engagement duration, and perceived workload. We hypothesize that an observable rearward displacement of COM signifies escalating fatigue levels. The methodology integrates ergonomic analysis, biomechanics, and predictive modeling. Preliminary findings indicate a decline in postural stability with increased AR exposure, reinforcing the need for ergonomics interventions. This study underscores the necessity of ergonomic consideration in the design and use of AR systems to safeguard user well-being in educational settings.
more »
« less
- Award ID(s):
- 2202108
- PAR ID:
- 10643768
- Publisher / Repository:
- Springer Nature Switzerland
- Date Published:
- ISBN:
- 978-3-031-61060-8
- Page Range / eLocation ID:
- 89 to 100
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Augmented Reality revolutionises education by enhancing learning with interactive, immersive experiences. However, the impact of long-term AR use, particularly in terms of physical demand, within educational environments remains poorly understood. This study investigates the relationship between AR engagement and physical demand, utilising motion capture technology, NASA Task Load Index, and HoloLens eye-tracking to quantify user posture, engagement, and perceived workload. We hypothesise that prolonged AR interaction results in a change in slouching scores, indicating increased fatigue. The results show a strong correlation between the slouching score and the NASA-TLX physical demand score. Our study lays the groundwork for incorporating predictive modelling to develop proactive physical demand measures.more » « less
-
This study explores the application of slouching scores to assess ergonomic posture in augmented reality (AR) environments. Employing Microsoft HoloLens 2 with Xsens motion capture technology, participants engaged in interactive biomechanics tasks, including a practical luggage-lifting exercise. Real-time feedback guided users towards safe posture, emphasizing spinal alignment and reducing physical strain. Slouching scores functioned as quantitative measures of posture quality, establishing a connection between unsafe postures and the requisite postural adjustments. The results illustrate how AR-integrated systems can enhance posture awareness, improve user ergonomics, and promote active learning in both educational and professional settings.more » « less
-
Our goal is for people to be physically com- fortable when taking objects from robots. This puts a burden on the robot to hand over the object in such a way that a person can easily reach it, without needing to strain or twist their arm – a way that is conducive to ergonomic human grasping configurations. To achieve this, the robot needs to understand what makes a configuration more or less ergonomic to the person, i.e. their ergonomic cost function. In this work, we formulate learning a person’s ergonomic cost as an online estimation problem. The robot can implicitly make queries to the person by handing them objects in different configurations, and gets observations in response about the way they choose to take the object. We compare the performance of both passive and active approaches for solving this problem in simulation, as well as in an in-person user study.more » « less
-
Many warehouse slotting algorithms have overlooked worker ergonomics. This research aimed to develop ergonomics slotting guidelines based upon the back and shoulder postures and electromyographic (EMG) responses of the deltoid and erector spinae muscles when individual items are picked from, or full cases replenished to, different shelf heights In the first study of two studies, participants lifted small items representative of piece-pick tasks from seven shelf heights. In the second study, participants performed a simulated full case replenishment task in which they lifted boxes weighing between 2.7 and 10.9 kg from a cart into a flow rack. Shelf height significantly affected all postural and EMG variables and there was a trade-off between back and shoulder muscle activity across the varying shelf heights. Together, these studies were used to develop some general ergonomic slotting guidelines that could be implemented to reduce biomechanical load exposures experienced by distribution center workers.more » « less
An official website of the United States government

