skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On the Surface Compositions of Molybdenum Carbide Nanoparticles for Electrocatalytic Applications
PerspectiveOn the Surface Compositions of Molybdenum Carbide Nanoparticles for Electrocatalytic ApplicationsSiying Yu and Hong Yang *Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, 600 S. Mathews, Urbana, IL 61801, USA* Correspondence: hy66@illinois.eduReceived: 28 November 2024; Accepted: 2 December 2024; Published: 6 December 2024 Abstract: Molybdenum carbide has attracted much research attention for its precious metal-like catalytic properties, especially in hydrogen-involved reactions. It possesses rich crystal and surface structures leading to different activity and product selectivity. With advances in nanoengineering and new understanding of their surfaces and interfaces, one can control the transition between different phases and surface structures for molybdenum carbide nanoparticles. In this context, it is essential to understand their surface compositions and structures under operating conditions in addition to their intrinsic ones under ambient conditions without external cues. The necessity of surface study also comes from the mild oxidation brought by passivation in carbide nanoparticles. made using the bottom-up synthesis or solid-gas phase temperature-programmed reduction. In this perspective, we first introduce the relevant crystal structures of molybdenum carbides and highlight the features of the three types of chemical bonding within. We then briefly review the studies of thermodynamically favored surface components and nanostructures for partially oxidized molybdenum carbide nanoparticles based on both experimental and theoretical data. An electrochemical oxidation method is used to illustrate the feasibility in controlling and understanding the surface oxidation. Finally, structure-property relationship is discussed with several recent examples, focusing on the effect of phase dependency on the adsorption energy of reaction intermediates.  more » « less
Award ID(s):
2055734
PAR ID:
10644019
Author(s) / Creator(s):
;
Publisher / Repository:
Cilight
Date Published:
Journal Name:
Materials and Interfaces
Volume:
1
ISSN:
2982-2394
Page Range / eLocation ID:
3-12
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The ability to control phase structures and surface sites of ultrasmall alloy nanoparticles under reaction conditions is essential for preparing catalysts by design. This is, however, challenging due to limited understanding of the atomic‐scale phases and their correlation with the ensemble‐averaged structures and activities of catalysts during catalytic reactions. We reveal here a dynamic structural stability of alumina‐supported ultrasmall and equiatomic copper‐gold alloy nanoparticles under reaction conditions as a model system in the in situ/operando study. In situ atomic‐scale morphological tracking under oxygen reveals temperature‐dependent dynamic crystalline‐amorphous dual‐phase structures, showing dynamic stability over an elevated temperature range. This atomic‐scale dynamic phase stability coincides with a “conversion plateau” observed for carbon monoxide oxidation on the catalyst. It is substantiated by the stable lattice ordering/disordering structures and surface sites with oscillatory characteristics shown by operando ensemble‐average structural tracking of the catalyst during the oxidation reaction. The understanding of the atomic‐scale dynamic phase structures in correlation with the ensemble‐average dynamic ordering/disordering phase structures and surface sites provides fresh insights into the unique synergy of the supported alloy nanoparticles. This understanding has implications for the design and structural tuning of active and stable ultrasmall alloy catalysts under elevated temperatures. 
    more » « less
  2. The surface oxidation of molybdenum carbide nanoparticles was controlled by the electrochemical method. The impact of surface oxidation on catalytic properties was studied by both spectroscopic and computational methods. 
    more » « less
  3. A simple procedure was developed to synthesize molybdenum carbide nanoparticles (Mo2C/BC) by carburization of molybdate salts supported on the biochar from pyrolysis of biomass without using extra carbon source or reducing gas. The molybdenum carbide formation procedure investigated by in-situ XRD and TGA-MS indicated that the phase transitions followed the path of (NH4)6Mo7O24·4H2O → (NH4)2Mo3O10 → (NH4)2Mo14O42 → Mo8O23 → Mo4O11 → MoO2 → Mo2C. The volatile gases CO, H2, and CH4 evolved from biochar and the biochar solid carbon participated in the reduction of molybdenum species, while the biochar and CH4 served as carbon sources for the carburization. Temperature programmed surface reactions of Mo2C/BC indicated that CH4 dissociated as CH4 ⇋ C∗ + 2H2 on the catalyst surface, and CO2 reacted as CO2 + C∗ ⇋ 2CO+ ∗ due to oxidation of Mo2C. Both experiment data and thermodynamic analysis for the study of operation conditions of CO2 reforming of CH4 clearly demonstrated that the yields of H2 and CO increased with the increased temperature and the reasonable conversions should be performed at 850 °C, at which both CH4 and CO2 conversions were higher than 80%. 
    more » « less
  4. Abstract Surface structures on radio-frequency (RF) superconductors are crucially important in determining their interaction with the RF field. Here we investigate the surface compositions, structural profiles, and valence distributions of oxides, carbides, and impurities on niobium (Nb) and niobium–tin (Nb3Sn)in situunder different processing conditions. We establish the underlying mechanisms of vacuum baking and nitrogen processing in Nb and demonstrate that carbide formation induced during high-temperature baking, regardless of gas environment, determines subsequent oxide formation upon air exposure or low-temperature baking, leading to modifications of the electron population profile. Our findings support the combined contribution of surface oxides and second-phase formation to the outcome of ultra-high vacuum baking (oxygen processing) and nitrogen processing. Also, we observe that vapor-diffused Nb3Sn contains thick metastable oxides, while electrochemically synthesized Nb3Sn only has a thin oxide layer. Our findings reveal fundamental mechanisms of baking and processing Nb and Nb3Sn surface structures for high-performance superconducting RF and quantum applications. 
    more » « less
  5. ArticleCathodic Corrosion-Induced Structural Evolution of CuNi Electrocatalysts for Enhanced CO2 ReductionWenjin Sun 1,†, Bokki Min 2,†, Maoyu Wang 3, Xue Han 4, Qiang Gao 1, Sooyeon Hwang 5, Hua Zhou 3, and Huiyuan Zhu 1,2,*1 Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA2 Department of Chemical Engineering, University of Virginia, Charlottesville, VA 22904, USA3 Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA4 Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA5 Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA* Correspondence: kkx8js@virginia.com† These authors contributed equally to this work.Received: 22 October 2024; Revised: 25 November 2024; Accepted: 27 November 2024; Published: 4 December 2024 Abstract: The electrochemical CO2 reduction reaction (CO2RR) has attracted significant attention as a promising strategy for storing intermittent energy in chemical bonds while sustainably producing value-added chemicals and fuels. Copper-based bimetallic catalysts are particularly appealing for CO2RR due to their unique ability to generate multi-carbon products. While substantial effort has been devoted to developing new catalysts, the evolution of bimetallic systems under operational conditions remains underexplored. In this work, we synthesized a series of CuxNi1−x nanoparticles and investigated their structural evolution during CO2RR. Due to the higher oxophilicity of Ni compared to Cu, the particles tend to become Ni-enriched at the surface upon air exposure, promoting the competing hydrogen evolution reaction (HER). At negative activation potentials, cathodic corrosion has been observed in CuxNi1−x nanoparticles, leading to the significant Ni loss and the formation of irregularly shaped Cu nanoparticles with increased defects. This structural evolution, driven by cathodic corrosion, shifts the electrolysis from HER toward CO2 reduction, significantly enhancing the Faradaic efficiency of multi-carbon products (C2+). 
    more » « less