skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 1, 2026

Title: Noninvasive Modulation of the Subcallosal Cingulate and Depression With Focused Ultrasonic Waves
BACKGROUND: Severe forms of depression have been linked to excessive subcallosal cingulate cortex (SCC) ac- tivity. Stimulation of the SCC with surgically implanted electrodes can alleviate depression, but current noninvasive techniques cannot directly and selectively modulate deep targets. We developed a new noninvasive neuromodulation approach that can deliver low-intensity focused ultrasonic waves to the SCC. METHODS: Twenty-two individuals with treatment-resistant depression participated in a randomized, double-blind, sham-controlled study. Ultrasonic stimulation was delivered to the bilateral SCC during concurrent functional magnetic resonance imaging to quantify target engagement. Mood state was measured with the Sadness subscale of the Positive and Negative Affect Schedule before and after 40 minutes of real or sham SCC stimulation. Change in depression severity was measured with the 6-item Hamilton Depression Rating Scale at 24 hours and 7 days. RESULTS: Functional magnetic resonance imaging demonstrated a target-speci c decrease in SCC activity during stimulation (p = .028, n = 16). In 7 of 16 participants, SCC neuromodulation was detectable at the individual participant level with a single 10-minute scan (p , .05, small-volume correction). Mood and depression scores improved more with real than with sham stimulation. In the per-protocol sample (n = 19), real stimulation was superior to sham for 6-item Hamilton Depression Rating Scale scores at 24 hours and for Sadness scores (both p , .05, d . 1). Nonsigni cant trends were found in the intent-to-treat sample. CONCLUSIONS: This small pilot study indicates that ultrasonic stimulation modulates SCC activity and can rapidly reduce depressive symptoms. The capability to noninvasively and selectively target deep brain areas creates new possibilities for the future development of circuit-directed therapeutics and for the analysis of deep-brain circuit function in humans.  more » « less
Award ID(s):
2325125
PAR ID:
10644307
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Biological Psychiatry
Date Published:
Journal Name:
Biological Psychiatry
Volume:
97
Issue:
8
ISSN:
0006-3223
Page Range / eLocation ID:
825 to 834
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Brain simulation techniques have demonstrated undisputable therapeutic effects on neural diseases. Invasive stimulation techniques like deep brain stimulation (DBS) and noninvasive techniques like transcranial magnetic stimulation (TMS) have been approved by FDA as treatments for many drug resist neural disorders and diseases. Developing noninvasive, deep, and targeted brain stimulation techniques is currently one of the important tasks in brain researches. Transcranial direct current stimulation (tDCS) and transcranial alternative current stimulation (tACS) techniques have the advantages of low cost and portability. However, neither of them can produce targeted stimulation due to lacking of electrical field focusing mechanism. Recently, Grossman et al. reported using the down beating signals of two tACS signals to accomplish focused stimulation. By sending two sine waves running at slightly different high frequencies (~2kHz), they demonstrated that they can modulate a “localized” neuron group at the difference frequency of the two sine waves and at the same time avoid excitation of neurons at other locations. As a result, equivalent focusing effect was accomplished by such beating mechanism. In this work, we show neither theoretically nor experimentally the beating mechanism can produce “focusing effect” and the beating signal spread globally across the full brain. The localized modulation effect likely happened right at the electrode contact sites when the electrode contact area is small and the current is concentrated. We conclude that to accomplish noninvasive and focused stimulation at current stage the only available tool is the focused TMS system we recently demonstrated. 
    more » « less
  2. Introduction:Electroconvulsive therapy (ECT) remains one of the most effective approaches for treatment-resistant depressive episodes, despite the potential cognitive impairment associated with this treatment. As a potent stimulator of neuroplasticity, ECT might normalize aberrant depression-related brain function via the brain’s reconstruction by forming new neural connections. Multiple lines of evidence have demonstrated that functional connectivity (FC) changes are reliable indicators of antidepressant efficacy and cognitive changes from static and dynamic perspectives. However, no previous studies have directly ascertained whether and how different aspects of FC provide complementary information in terms of neuroimaging-based prediction of clinical outcomes. Methods:In this study, we implemented a fully automated independent component analysis framework to an ECT dataset with subjects (n = 50, age = 65.54 ± 8.92) randomized to three treatment amplitudes (600, 700, or 800 milliamperes [mA]). We extracted the static functional network connectivity (sFNC) and dynamic FNC (dFNC) features and employed a partial least square regression to build predictive models for antidepressant outcomes and cognitive changes. Results:We found that both antidepressant outcomes and memory changes can be robustly predicted by the changes in sFNC (permutation test p < 5.0 × 10−3). More interestingly, by adding dFNC information, the model achieved higher accuracy for predicting changes in the Hamilton Depression Rating Scale 24-item (HDRS24, t = 9.6434, p = 1.5 × 10−21). The predictive maps of clinical outcomes show a weakly negative correlation, indicating that the ECT-induced antidepressant outcomes and cognitive changes might be associated with different functional brain neuroplasticity. Discussion:The overall results reveal that dynamic FC is not redundant but reflects mechanisms of ECT that cannot be captured by its static counterpart, especially for the prediction of antidepressant efficacy. Tracking the predictive signatures of static and dynamic FC will help maximize antidepressant outcomes and cognitive safety with individualized ECT dosing. 
    more » « less
  3. Transcranial Direct Current Stimulation (tDCS) is a non-invasive brain stimulation method that applies neuromodulatory effects to the brain via low-intensity, direct current. It has shown possible positive effects in areas such as depression, substance use disorder, anxiety, and pain. Unfortunately, mixed trial results have delayed the field’s progress. Electrical current field approximation provides a way for tDCS researchers to estimate how an individual will respond to specific tDCS parameters. Publicly available physics-based stimulators have led to much progress; however, they can be error-prone, susceptible to quality issues (e.g., poor segmentation), and take multiple hours to run. Digital functional twins provide a method of estimating brain function in response to stimuli using computational methods. We seek to implement this idea for individualized tDCS. Hence, this work provides a proof-of-concept for generating electrical field maps for tDCS directly from T1-weighted magnetic resonance images (MRIs). Our deep learning method employs special loss regularizations to improve the model’s generalizability and calibration across individual scans and electrode montages. Users may enter a desired electrode montage in addition to the unique MRI for a custom output. Our dataset includes 442 unique individual heads from individuals across the adult lifespan. The pipeline can generate results on the scale of minutes, unlike physics-based systems that can take 1–3 hours. Overall, our methods will help streamline the process of individual current dose estimations for improved tDCS interventions. To support open science, the code that is associated with this paper is available at: https://github.com/lab-smile/tDCS-DT. 
    more » « less
  4. Abstract Working memory (WM) is a fundamental cognitive ability that supports complex thought but is limited in capacity. Thus, WM training interventions have become very popular as a means of potentially improving WM-related skills. Another promising intervention that has gained increasing traction in recent years is transcranial direct current stimulation (tDCS), a noninvasive form of brain stimulation that can modulate cortical excitability and temporarily increase brain plasticity. As such, it has the potential to boost learning and enhance performance on cognitive tasks. This study assessed the efficacy of tDCS to supplement WM training. Sixty-two participants were randomized to receive either right prefrontal, left prefrontal, or sham stimulation with concurrent visuospatial WM training over the course of seven training sessions. Results showed that tDCS enhanced training performance, which was strikingly preserved several months after training completion. Furthermore, we observed stronger effects when tDCS was spaced over a weekend break relative to consecutive daily training, and we also demonstrated selective transfer in the right prefrontal group to nontrained tasks of visual and spatial WM. These findings shed light on how tDCS may be leveraged as a tool to enhance performance on WM-intensive learning tasks. 
    more » « less
  5. Miniaturization of the neuromodulation system is important for non-invasive or sub-invasive optogenetic application. This work presents an optimized wireless power transfer (WPT) system integrated with an on-chip rectification circuitry and an off-chip stimulation circuitry for optogenetic stimulation of freely moving rodents. The proposed WPT system is built using parallel transmitter (TX) coils on printed circuit board (PCB) and wire-wound based receiver (RX) coil followed by a seven-stage voltage doubler and a low dropout regulator (LDO) circuit designed in 180 nm standard Complementary Metal Oxide Semiconductor (CMOS) process. A pulse stimulation is used to stimulate the neurons which is generated using a commercially available off-the-shelf (COTS) components based oscillator circuit. The intensity of the stimulation is controlled by using a COTS based LED driver circuit which controls the current through the μ LED. The total dimension of the RX coil is 8 mm × 3.4 mm. The maximum power transfer efficiency (PTE) of the proposed WPT system is ∼ 35% and the power conversion efficiency (PCE) of the rectifier is 52%. The proposed system with reconfigurable stimulation frequency is suitable for exciting different brain areas for long-term health monitoring. 
    more » « less