skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 1, 2026

Title: Temperature Fluctuations of Different Vertical Scales in Raw and Processed U.S. High Vertical-Resolution Radiosonde Data
Abstract One-second U.S. high vertical-resolution radiosonde data (HVRRD) contain two different sets of temperature data—the raw data and the processed data. The processed data have been subject to radiation corrections, which have been well documented, and smoothing, the details of which are proprietary to the radiosonde manufacturers. We have tried to characterize this smoothing by computing the root-mean-square (rms) of normalized temperature perturbations derived from removing a second-degree polynomial fit for altitude segments (Δz) from 100 m to 5 km. We find that for Δz= 100 m, rms values are larger at higher altitudes, are larger in the raw data than in the processed data, and are larger during daytime than during nighttime, for both the raw and processed data. The rms values and their daytime to nighttime differences are larger in the raw data than in the processed data. As Δzincreases toward 5 km, the geographical patterns of rms over the contiguous United States from both the raw and processed data start resembling previously published gravity wave total energy patterns obtained from the older 6-s U.S. radiosonde data. An example is shown of a discontinuity in the small-scale rms values when radiosonde instrumentation is changed, so it is concluded that small-scale temperature fluctuations will be different for different radiosonde instruments. Examples are shown of enhanced small-scale rms temperature values indicative of turbulence resulting from gravity wave critical levels and from enhanced gravity waves due to seasonal maxima in convection. Significance StatementWe have characterized the variability of the raw and processed temperature profiles of the U.S. high vertical resolution radiosonde data for various vertical scales. We have argued that sources of small-scale fluctuations in the processed data include turbulence and the radiation effects which have not been accounted for in the current derivation of the processed data. Temperature fluctuations of larger scales correspond to those from gravity waves. We have shown an example of a discontinuity in small-scale fluctuations at a radiosonde station when the instrumentation was changed. These results suggest that temperature fluctuations resulting from varying amounts of solar radiation falling on the temperature sensor as the radiosonde instrumentation swings and rotates should be evaluated for each radiosonde system.  more » « less
Award ID(s):
2129221 2032678
PAR ID:
10644523
Author(s) / Creator(s):
 ;  
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Journal of Atmospheric and Oceanic Technology
Volume:
42
Issue:
3
ISSN:
0739-0572
Page Range / eLocation ID:
309 to 317
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We have published a recent paper on differences between temperature fluctuations of various vertical scales in raw and processed U.S. high vertical resolution radiosonde data (HVRRD). In that paper, we note that the small-scale temperature fluctuations in the raw U.S. HVRRD are significantly larger than those in the processed U.S. HVRRD and that those small-scale temperature fluctuations are much larger during daytime that during nighttime. We believe that this is due to the varying amount of solar radiation falling on the radiosonde temperature sensor as the radiosonde instrument swings and rotates. In light of these new results, we present revisions to some of our conclusions about the climatology of atmospheric unstable layers. When we repeat our calculations of atmospheric unstable layers using the processed U.S. HVRRD, we find the following. 1) The 0000/1200 UTC differences in unstable layer occurrences in the lower stratosphere that were noted in our earlier paper essentially disappear. 2) The “notch” in the deep tropics where there is a relative deficiency of thin unstable layers and a corresponding excess of thicker layers is still a feature when processed data are analyzed, but the daytime notch is less marked when the processed data were used. 3) The discontinuity in unstable layer occurrences, when there was a change in radiosonde instrumentation, is still present when processed data are analyzed, but is diminished from what it was when the raw data were analyzed. Significance StatementIn a previous paper deriving the climatology of atmospheric unstable layers, we emphasized several findings. We reexamine three of the main points of that paper when processed U.S. high vertical resolution radiosonde data are analyzed instead of the raw data used in that previous paper. We find the 0000/1200 UTC differences virtually disappear in the new analysis. We find that the “notch” feature previously noted at Koror still exists, and we find that the discontinuity in unstable layers, when radiosonde instrumentation is changed, is diminished, but is still present in the new analysis. 
    more » « less
  2. Abstract The inverse temperature layer (ITL) beneath water‐atmosphere interface within which temperature increases with depth has been observed from measurement of water temperature profile at an inland lake. Strong solar radiation combined with moderate wind‐driven near‐surface turbulence leads to the formation of a pronounced diurnal cycle of the ITL predicted by a physical heat transfer model. The ITL only forms during daytime when solar radiation intensity exceeds a threshold while consistently occurs during nighttime. The largest depth of the ITL is comparable to thee‐fold penetration depth of solar radiation during daytime and at least one order of magnitude deeper during nighttime. The dynamics of the ITL depth variation simulated by a physical model forced by observed water surface solar radiation and temperature is confirmed by the observed water temperature profile in the lake. 
    more » « less
  3. Abstract Electron density irregularities on the dayside in the low‐latitudeFregion are understood as remnants (or fossils) of nighttime plasma bubbles. We provide observational evidence of the connection of daytime irregularities to nighttime bubbles and the transport of the daytime irregularities by the vertical motion of the background ionosphere. The distributions of irregularities are derived using the measurements of the ion density by the first Republic of China satellite from March 1999 to June 2004. The seasonal and longitudinal distributions of daytime and nighttime irregularities in low latitudes show a close similarity. The high occurrence rate of daytime irregularities at the longitudes where strong irregularities occur frequently at night provides strong evidence of the association of daytime irregularities with nighttime bubbles. Nighttime irregularities are concentrated in the equatorial region, whereas daytime irregularities spread over broader latitudes. The seasonal and longitudinal variation of the latitudinal spread of daytime irregularities is consistent with the morphologies of plasma density and vertical plasma velocity. The zonal wave number 4 pattern, which corresponds to that in plasma density, is identified in the distribution of daytime irregularities. These observations lead to the conclusion that the morphology of daytime irregularities in the low‐latitudeFregion is dominated by the morphology of bubbles at night and the ionospheric fountain process on the dayside. 
    more » « less
  4. Abstract Surface gravity wave effects on currents (WEC) cause the emergence of Langmuir cells (LCs) in a suite of high horizontal resolution (Δx= 30 m), realistic oceanic simulations in the open ocean of central California. During large wave events, LCs develop widely but inhomogeneously, with larger vertical velocities in a deeper mixed layer. They interact with extant submesoscale currents. A 550-m horizontal spatial filter separates the signals of LCs and of submesoscale and larger-scale currents. The LCs have a strong velocity variance with small density gradient variance, while submesoscale currents are large in both. Using coarse graining, we show that WEC induces a forward cascade of kinetic energy in the upper ocean up to at least a 5-km scale. This is due to strong positive vertical Reynolds stress (in both the Eulerian and the Stokes drift energy production terms) at all resolved scales in the WEC solutions, associated with large vertical velocities. The spatial filter elucidates the role of LCs in generating the shear production on the vertical scale of Stokes drift (10 m), while submesoscale currents affect both the horizontal and vertical energy fluxes throughout the mixed layer (50–80 m). There is a slightly weaker forward cascade associated with nonhydrostatic LCs (by 13% in average) than in the hydrostatic case, but overall the simulation differences are small. A vertical mixing schemeK-profile parameterization (KPP) partially augmented by Langmuir turbulence yields wider LCs, which can lead to lower surface velocity gradients compared to solutions using the standard KPP scheme. 
    more » « less
  5. Abstract Atmospheric gravity waves can play a significant role on atmospheric chemistry through temperature fluctuations. A recent modeling study introduced a method to implement subgrid‐scaleorographicgravity‐wave‐induced temperature perturbations in the Whole Atmosphere Community Climate Model (WACCM). The model with a wave‐induced temperature parameterization was able to reproduce for example, the influence of mountain wave events on atmospheric chemistry, as highlighted in previous literature. Here we extend the subgrid‐scale wave‐induced temperature parameterization to also includenon‐orographicgravity waves arising from frontal activity and convection. We explore the impact of these waves on middle atmosphere chemistry, particularly focusing on reactions that are strongly sensitive to temperature. The non‐orographic gravity waves increase the variability of chemical reaction rates, especially in the lower mesosphere. As an example, we show that this, in turn, leads to increases in the daytime ozone variability. To demonstrate another impact, we briefly investigate the role of non‐orographic gravity waves in cirrus cloud formation in this model. Consistent with findings from the previous study focusing on orographic gravity waves, non‐orographic waves also enhance homogeneous nucleation and increase cirrus clouds. The updated method used enables the global chemistry‐climate model to account for both orographic and non‐orographic gravity‐wave‐induced subgrid‐scale dynamical perturbations in a consistent manner. 
    more » « less