Abstract Stellar abundance measurements are subject to systematic errors that induce extra scatter and artificial correlations in elemental abundance patterns. We derive empirical calibration offsets to remove systematic trends with surface gravity in 17 elemental abundances of 288,789 evolved stars from the SDSS APOGEE survey. We fit these corrected abundances as the sum of a prompt process tracing core-collapse supernovae and a delayed process tracing Type Ia supernovae, thus recasting each star’s measurements into the amplitudesAccandAIaand the element-by-element residuals from this two-parameter fit. As a first application of this catalog, which is 8× larger than that of previous analyses that used a restricted range, we examine the median residual abundances of 14 open clusters, nine globular clusters, and four dwarf satellite galaxies. Relative to field Milky Way disk stars, the open clusters younger than 2 Gyr show ≈0.1−0.2 dex enhancements of the neutron-capture element Ce, and the two clusters younger than 0.5 Gyr also show elevated levels of C+N, Na, S, and Cu. Globular clusters show elevated median abundances of C+N, Na, Al, and Ce, and correlated abundance residuals that follow previously known trends. The four dwarf satellites show similar residual abundance patterns despite their different star formation histories, with ≈0.2–0.3 dex depletions in C+N, Na, and Al and ≈0.1 dex depletions in Ni, V, Mn, and Co. We provide our catalog of corrected APOGEE abundances, two-process amplitudes, and residual abundances, which will be valuable for future studies of abundance patterns in different stellar populations and of additional enrichment processes that affect galactic chemical evolution.
more »
« less
This content will become publicly available on April 25, 2026
Many Elements Matter: Detailed Abundance Patterns Reveal Star Formation and Enrichment Differences among Milky Way Structural Components
Abstract Many nucleosynthetic channels create the elements, but two-parameter models characterized byαand Fe nonetheless predict stellar abundances in the Galactic disk to accuracies of 0.02–0.05 dex for most measured elements, near the level of current abundance uncertainties. It is difficult to make individual measurements more precise than this to investigate lower-amplitude nucleosynthetic effects, but population studies of mean abundance patterns can reveal more subtle abundance differences. Here, we look at the detailed abundances for 67,315 stars from the Apache Point Observatory Galactic Evolution Experiment (or APOGEE) Data Release 17, but in abundance residuals away from a best-fit two-parameter, data-driven nucleosynthetic model. We find that these residuals show complex structures with respect to age, guiding radius, and vertical action that are not random and are also not strongly correlated with sources of systematic error such as ,Teff, and radial velocity. The residual patterns, especially in Na, C+N, Mn, and Ce, trace kinematic structures in the Milky Way, such as the inner disk, thick disk, and flared outer disk. A principal component analysis suggests that most of the observed structure is low-dimensional and can be explained by a few eigenvectors. We find that some, but not all, of the effects in the low-αdisk can be explained by dilution with fresh gas, so that the abundance ratios resemble those of stars with higher metallicity. The patterns and maps we provide can be combined with accurate forward models of nucleosynthesis, star formation, and gas infall to provide a more detailed picture of star and element formation in different Milky Way components.
more »
« less
- PAR ID:
- 10644557
- Publisher / Repository:
- IOP
- Date Published:
- Journal Name:
- The Astronomical Journal
- Volume:
- 169
- Issue:
- 5
- ISSN:
- 0004-6256
- Page Range / eLocation ID:
- 280
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Large-scale surveys open the possibility to investigate Galactic evolution both chemically and kinematically; however, reliable stellar ages remain a major challenge. Detailed chemical information provided by high-resolution spectroscopic surveys of the stars in clusters can be used as a means to calibrate recently developed chemical tools for age-dating field stars. Using data from the Open Cluster Abundances and Mapping survey, based on the Sloan Digital Sky Survey/Apache Point Observatory Galactic Evolution Experiment 2 survey, we derive a new empirical relationship between open cluster stellar ages and the carbon-to-nitrogen ([C/N]) abundance ratios for evolved stars, primarily those on the red giant branch. With this calibration, [C/N] can be used as a chemical clock for evolved field stars to investigate the formation and evolution of different parts of our Galaxy. We explore how mixing effects at different stellar evolutionary phases, like the red clump, affect the derived calibration. We have established the [C/N]–age calibration for APOGEE Data Release 17 (DR17) giant star abundances to be , usable for , derived from a uniform sample of 49 clusters observed as part of APOGEE DR17 applicable primarily to metal-rich, thin- and thick-disk giant stars. This measured [C/N]–age APOGEE DR17 calibration is also shown to be consistent with asteroseismic ages derived from Kepler photometry.more » « less
-
Abstract The evolutionary history of the Milky Way disk is imprinted in the ages, positions, and chemical compositions of individual stars. In this study, we derive the intrinsic density distribution of different stellar populations using the final data release of the Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey. A total of 203,197 red giant branch stars are used to sort the stellar disk (R≤ 20 kpc) into subpopulations of metallicity (Δ[M/H] = 0.1 dex), age ( ), andα-element abundances ([α/M]). We fit the present-day structural parameters and density distribution of each stellar subpopulation after correcting for the survey selection function. The low-αdisk is characterized by longer scale lengths and shorter scale heights, and is best fit by a broken exponential radial profile for each population. The high-αdisk is characterized by shorter scale lengths and larger scale heights, and is generally well-approximated by a single exponential radial profile. These results are applied to produce new estimates of the integrated properties of the Milky Way from early times to the present day. We measure the total stellar mass of the disk to be M⊙, and the average mass-weighted scale length isRd = 2.37 ± 0.2 kpc. The Milky Way’s present-day color of (g − r) = 0.72 ± 0.02 is consistent with the classification of a red spiral galaxy, although it has only been in the “green valley” region of the galaxy color–mass diagram for the last ∼3 Gyr.more » « less
-
Abstract We present chemical abundances and velocities of five stars between 0.3 and 1.1 kpc from the center of the Tucana II ultrafaint dwarf galaxy (UFD) from high-resolution Magellan/MIKE spectroscopy. We find that every star is deficient in metals (−3.6 < [Fe/H] < −1.9) and in neutron-capture elements as is characteristic of UFD stars, unambiguously confirming their association with Tucana II. Other chemical abundances (e.g., C, iron peak) largely follow UFD trends and suggest that faint core-collapse supernovae (SNe) dominated the early evolution of Tucana II. We see a downturn in [α/Fe] at [Fe/H] ≈ −2.8, indicating the onset of Type Ia SN enrichment and somewhat extended chemical evolution. The most metal-rich star has strikingly low [Sc/Fe] = −1.29 ± 0.48 and [Mn/Fe] = −1.33 ± 0.33, implying significant enrichment by a sub-Chandrasekhar mass Type Ia SN. We do not detect a radial velocity gradient in Tucana II ( km s−1kpc−1), reflecting a lack of evidence for tidal disruption, and derive a dynamical mass of M⊙. We revisit formation scenarios of the extended component of Tucana II in light of its stellar chemical abundances. We find no evidence that Tucana II had abnormally energetic SNe, suggesting that if SNe drove in situ stellar halo formation, then other UFDs should show similar such features. Although not a unique explanation, the decline in [α/Fe] is consistent with an early galactic merger triggering later star formation. Future observations may disentangle such formation channels of UFD outskirts.more » « less
-
Abstract We present ∼300 stellar metallicity measurements in two faint M31 dwarf galaxies, Andromeda XVI (MV= −7.5) and Andromeda XXVIII (MV= –8.8), derived using metallicity-sensitive calcium H and K narrowband Hubble Space Telescope imaging. These are the first individual stellar metallicities in And XVI (95 stars). Our And XXVIII sample (191 stars) is a factor of ∼15 increase over literature metallicities. For And XVI, we measure , , and ∇[Fe/H]= −0.23 ± 0.15 dex . We find that And XVI is more metal-rich than Milky Way ultrafaint dwarf galaxies of similar luminosity, which may be a result of its unusually extended star formation history. For And XXVIII, we measure , , and ∇[Fe/H]= −0.46 ± 0.10 dex , placing it on the dwarf galaxy mass–metallicity relation. Neither galaxy has a metallicity distribution function (MDF) with an abrupt metal-rich truncation, suggesting that star formation fell off gradually. The stellar metallicity gradient measurements are among the first for faint (L≲ 106L⊙) galaxies outside the Milky Way halo. Both galaxies’ gradients are consistent with predictions from the FIRE simulations, where an age–gradient strength relationship is the observational consequence of stellar feedback that produces dark matter cores. We include a catalog for community spectroscopic follow-up, including 19 extremely metal-poor ([Fe/H] < –3.0) star candidates, which make up 7% of And XVI’s MDF and 6% of And XXVIII’s.more » « less
An official website of the United States government
