skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Simultaneous Dual-region Functional Imaging in Miniaturized Two-photon Microscopy
We demonstrate simultaneous dual-region in-vivo imaging of brain activity in mouse cortex through a miniaturized spatial-multiplexed two-photon microscope platform, which doubles the imaging speed. Neuronal signals from the two regions are computationally demixed and extracted.  more » « less
Award ID(s):
1847141
PAR ID:
10644637
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Optica Publishing Group
Date Published:
Page Range / eLocation ID:
BM3C.4
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We developed multiplexed miniaturized two-photon microscopes (M-MINI2Ps) that increase imaging speed while preserving high spatial resolution. Using M-MINI2Ps, we performed large-scale volumetric calcium imaging and high-speed voltage imaging in the cortex of freely- behaving mice. 
    more » « less
  2. We propose a time-multiplexed miniaturized two-photon microscope (TM-MINI2P), enabling a two-fold increase in imaging speed while maintaining a high spatial resolution. Using TM-MINI2P, we conducted high-speed in-vivo calcium imaging in mouse cortex. 
    more » « less
  3. Abstract Motivated by recent work involving the analysis of biomedical imaging data, we present a novel procedure for constructing simultaneous confidence corridors for the mean of imaging data. We propose to use flexible bivariate splines over triangulations to handle an irregular domain of the images that is common in brain imaging studies and in other biomedical imaging applications. The proposed spline estimators of the mean functions are shown to be consistent and asymptotically normal under some regularity conditions. We also provide a computationally efficient estimator of the covariance function and derive its uniform consistency. The procedure is also extended to the two‐sample case in which we focus on comparing the mean functions from two populations of imaging data. Through Monte Carlo simulation studies, we examine the finite sample performance of the proposed method. Finally, the proposed method is applied to analyze brain positron emission tomography data in two different studies. One data set used in preparation of this article was obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. 
    more » « less
  4. In this paper, we consider the inverse scattering problem for recovering either an isotropic or anisotropic scatterer from the measured scattered field initiated by a point source. We propose two new imaging functionals for solving the inverse problem. The first one employs a 'far-field' transform to the data which we then use to derive and provide an explicit decay rate for the imaging functional. In order to analyze the behavior of this imaging functional we use the factorization of the near field operator as well as the Funk-Hecke integral identity. For the second imaging functional the Cauchy data is used to define the functional and its behavior is analyzed using the Green's identities. Numerical experiments are given in two dimensions for both isotropic and anisotropic scatterers. 
    more » « less
  5. Abstract We present a two-photon fluorescence microscope designed for high-speed imaging of neural activity in cellular resolution. Our microscope uses a new adaptive sampling scheme with line illumination. Instead of building images pixel by pixel via scanning a diffraction-limited spot across the sample, our scheme only illuminates the regions of interest (i.e., neuronal cell bodies), and samples a large area of them in a single measurement. Such a scheme significantly increases the imaging speed and reduces the overall laser power on the brain tissue. Using this approach, we performed high-speed imaging of the neural activity of mouse cortexin vivo. Our method provides a new sampling strategy in laser-scanning two-photon microscopy, and will be powerful for high-throughput imaging of neural activity. 
    more » « less