To predict rare extreme events using deep neural networks, one encounters the so-called small data problem because even long-term observations often contain few extreme events. Here, we investigate a model-assisted framework where the training data are obtained from numerical simulations, as opposed to observations, with adequate samples from extreme events. However, to ensure the trained networks are applicable in practice, the training is not performed on the full simulation data; instead, we only use a small subset of observable quantities, which can be measured in practice. We investigate the feasibility of this model-assisted framework on three different dynamical systems (Rössler attractor, FitzHugh–Nagumo model, and a turbulent fluid flow) and three different deep neural network architectures (feedforward, long short-term memory, and reservoir computing). In each case, we study the prediction accuracy, robustness to noise, reproducibility under repeated training, and sensitivity to the type of input data. In particular, we find long short-term memory networks to be most robust to noise and to yield relatively accurate predictions, while requiring minimal fine-tuning of the hyperparameters.
more »
« less
Computing in Transit to Identify Rare Events in Streaming Scientific Data
Not AvailableProgrammable networks, aside from carrying out their core network functions, can look deep into the data stream and perform application layer processing. But, expect for a few demonstrations, this capability remains largely under explored and under utilized. Currently, scientific computing leverages networks only for communication and not for computation. We propose Computing in Transit to unleash the potential of network computing for scientific workflows. Specifically, we investigate computing in transit in the context of light source experiments. Researchers using light sources are interested in rare events and we intend to leverage computing in transit to solve this problem. As the compute and memory resources available within the network are scarce, we must use these resources prudently without sacrificing on performance metrics. Computing within the network can support significantly higher throughput at low latency but it may be less accurate as there are limitations to how deep a network can inspect the payload. We propose a neutralized checksum that takes in TCP checksum as an input to avoid processing the entire payload. We evaluate this approach to identify rare events by introducing random perturbations to reference frames. We measure the effectiveness of neutralized checksum to identify changes. We see that neutralized checksum identifies all changes and is a very promising approach to rare event detection.
more »
« less
- Award ID(s):
- 2526959
- PAR ID:
- 10644678
- Publisher / Repository:
- IEEE
- Date Published:
- Page Range / eLocation ID:
- 1 to 4
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Unpredictability is one of the top reasons that prevent people from using public transportation. To improve the on-time performance of transit systems, prior work focuses on updating schedule periodically in the long-term and providing arrival delay prediction in real-time. But when no real-time transit and traffic feed is available (e.g., one day ahead), there is a lack of effective contextual prediction mechanism that can give alerts of possible delay to commuters. In this paper, we propose a generic tool-chain that takes standard General Transit Feed Specification (GTFS) transit feeds and contextual information (recurring delay patterns before and after big events in the city and the contextual information such as scheduled events and forecasted weather conditions) as inputs and provides service alerts as output. Particularly, we utilize shared route segment networks and multi-task deep neural networks to solve the data sparsity and generalization issues. Experimental evaluation shows that the proposed toolchain is effective at predicting severe delay with a relatively high recall of 76% and F1 score of 55%more » « less
-
To alleviate bottlenecks in storing and accessing data on high-performance computing (HPC) systems, I/O libraries are enabling computation while data is in-transit, such as HDFS filters. For scientific applications that commonly use floating-point data, error-bounded lossy compression methods are a critical technique to significantly reduce the storage and bandwidth requirements. Thus far, deciding when and where to schedule in-transit data transformations, such as compression, has been outside the scope of I/O libraries. In this paper, we introduce Runway, a runtime framework that enables computation on in-transit data with an object storage abstraction. Runway is designed to be extensible to execute user-defined functions at runtime. In this effort, we focus on studying methods to offload data compression operations to available processing units based on latency and throughput. We compare the performance of running compression on multi-core CPUs, as well as offloading it to a GPU and a Data Processing Unit (DPU). We implement a state-of-the-art error-bounded lossy compression algorithm, SZ3, as a Runway function with a variant optimized for DPUs. We propose dynamic modeling to guide scheduling decisions for in-transit data compression. We evaluate Runway using four scientific datasets from the SDRBench benchmark suite on a the Perlmutter supercomputer at NERSC.more » « less
-
In today's Big Data era, data scientists require new computational instruments in order to quickly analyze large-scale datasets using complex codes and quicken the rate of scientific progress. While Federally-funded computer resources, from supercomputers to clouds, are beneficial, they are often limiting - particularly for deep learning and visualization - as they have few Graphics Processing Units (GPUs). GPUs are at the center of modern high-performance computing and artificial intelligence, efficiently performing mathematical operations that can be massively parallelized, speeding up codes used for deep learning, visualization and image processing, more so than general-purpose microprocessors, or Central Processing Units (CPUs). The University of Illinois at Chicago is acquiring a much-in-demand GPU-based instrument, COMPaaS DLV - COMposable Platform as a Service Instrument for Deep Learning & Visualization, based on composable infrastructure, an advanced architecture that disaggregates the underlying compute, storage, and network resources for scaling needs, but operates as a single cohesive infrastructure for management and workload purposes. We are experimenting with a small system and learning a great deal about composability, and we believe COMPaaS DLV users will benefit from the varied workflow that composable infrastructure allows.more » « less
-
Abstract Rapid advancements in deep learning over the past decade have fueled an insatiable demand for efficient and scalable hardware. Photonics offers a promising solution by leveraging the unique properties of light. However, conventional neural network architectures, which typically require dense programmable connections, pose several practical challenges for photonic realizations. To overcome these limitations, we propose and experimentally demonstrate Photonic Neural Cellular Automata (PNCA) for photonic deep learning with sparse connectivity. PNCA harnesses the speed and interconnectivity of photonics, as well as the self-organizing nature of cellular automata through local interactions to achieve robust, reliable, and efficient processing. We utilize linear light interference and parametric nonlinear optics for all-optical computations in a time-multiplexed photonic network to experimentally perform self-organized image classification. We demonstrate binary (two-class) classification of images using as few as 3 programmable photonic parameters, achieving high experimental accuracy with the ability to also recognize out-of-distribution data. The proposed PNCA approach can be adapted to a wide range of existing photonic hardware and provides a compelling alternative to conventional photonic neural networks by maximizing the advantages of light-based computing whilst mitigating their practical challenges. Our results showcase the potential of PNCA in advancing photonic deep learning and highlights a path for next-generation photonic computers.more » « less
An official website of the United States government

