skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Constraining the Kinematics of the Victoria Microplate and the Northern Western Branch of the East African Rift System
Abstract The fragmentation of continents results in microplates that rotate to accommodate the lateral propagation of bounding rifts. Yet, the relationships between microplate rotation rates, fault slip, and kinematics at propagating rift tips remain unknown. Here, we analyze new Global Navigation Satellite System (GNSS) data and structural geology data from the northern Western Branch of the East African Rift System that defines part of the boundary between the Nubian plate and the Victoria microplate. We resolve 0.0583 ± 0.0293°/Myr (6.48 ± 3.26 mm/yr) counterclockwise rotation of the Victoria microplate, consistent with previous studies, but with significant northwestward shift in the Euler pole relative to earlier work. Strain is largely localized on microplate‐bounding faults with 1.8–2.2 mm/yr slip rates, 7.2 × 10−8–1.28 × 10−7 y−1strain rates, NE‐directed extension, and oblique‐normal fault kinematics. Most GNSS velocities are consistent with block rigidity, but three sites in the NW region of the Victoria microplate indicate possible internal deformation.  more » « less
Award ID(s):
2021633 1551864 1943681 2210214
PAR ID:
10645064
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
52
Issue:
20
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Seismic hazard assessment, such as the U.S. Geological Survey (USGS) National Seismic Hazard Model (NSHM), relies on estimates of fault slip rate based on geology and/or geodetic observations such as the Global Navigation Satellite System (GNSS), including the Global Positioning System. Geodetic fault slip rates may be estimated within a 3D spherical block model, in which the crust is divided into microplates bounded by mapped faults; fault slip rates are determined by the relative rotations of adjacent microplates. Uncertainty in selecting appropriate block-bounding faults and in forming closed microplates has limited the interpretability of block models for seismic hazard modeling. By introducing an automated block closure algorithm and regularizing the resulting densely spaced block model with total variation regularization, I develop the densest and most complete block model of the western continental United States to date. The model includes 853 blocks bounded by 1017 geologically identified fault sections from the USGS NSHM Fault Sections database. Microplate rotations and fault slip rates are constrained by 4979 GNSS velocities and 1243 geologic slip rates. I identify a regularized solution that fits the GNSS velocity field with a root mean square misfit of 1.9 mm/yr and reproduces 57% of geologic slip rates within reported geologic uncertainty and model sensitivity, consistent with other geodetic-based models in this Focus Section. This block model includes slip on faults that are not included in the USGS NSHM Fault sections database (but are required to form closed blocks) for an estimate of “off-fault” deformation of 3.62×1019  N·m/yr, 56% of the total calculated moment accumulation rate in the model. 
    more » « less
  2. Abstract The potential for future earthquakes on faults is often inferred from inversions of geodetically derived surface velocities for locking on faults using kinematic models such as block models. This can be challenging in complex deforming zones with many closely spaced faults or where deformation is not readily described with block motions. Furthermore, surface strain rates are more directly related to coupling on faults than surface velocities. We present a methodology for estimating slip deficit rate directly from strain rate and apply it to New Zealand for the purpose of incorporating geodetic data in the 2022 revision of the New Zealand National Seismic Hazard Model. The strain rate inversions imply slightly higher slip deficit rates than the preferred geologic slip rates on sections of the major strike‐slip systems including the Alpine Fault, the Marlborough Fault System and the northern part of the North Island Fault System. Slip deficit rates are significantly lower than even the lowest geologic estimates on some strike‐slip faults in the southern North Island Fault System near Wellington. Over the entire plate boundary, geodetic slip deficit rates are systematically higher than geologic slip rates for faults slipping less than one mm/yr but lower on average for faults with slip rates between about 5 and 25 mm/yr. We show that 70%–80% of the total strain rate field can be attributed to elastic strain due to fault coupling. The remaining 20%–30% shows systematic spatial patterns of strain rate style that is often consistent with local geologic style of faulting. 
    more » « less
  3. We combine Global Positioning System and Interferometric Synthetic Aperture Radar (InSAR) data to characterize the interseismic behavior (i.e., locked or creeping), and strain partitioning for the faults along the Caribbean‐South American transform plate boundary. Interseismic strain is distributed mainly on three faults, the San Sebastian, El Pilar, and Central Range faults, but partitioning occurs across multiple faults in the west (San Sebastian and La Victoria faults) and east (Sub‐Tobago Terrane, Central Range, and South Coast faults). In northern Venezuela, slip is partitioned on the San Sebastian (16.4 ± 1.7 mm/yr) and La Victoria (4.3 ± 0.9 mm/yr) faults. In north‐eastern Venezuela, the El Pilar fault accommodates slip at a rate of 18.6 ± 1.8 mm/yr. In Trinidad and Tobago, slip is partitioned between the Sub‐Tobago Terrane (3.0 ± 0.1 mm/yr), Central Range (14.5 ± 2.0 mm/yr), and South Coast (3.0 ± 0.1 mm/yr) faults. The La Victoria, San Sebastian, the western El Pilar segment, and Sub‐Tobago Terrane faults are locked to depths of 16.2 ± 4.0 km, 7.7 ± 5.2 km, 6.7 ± 2.8 km, and 8.0 ± 0.2 km, respectively. The eastern segment of the El Pilar, the Central Range, and the South Coast faults all creep. Our new InSAR results indicate that the entire Central Range Fault is creeping. The locked western segment of this transform plate boundary is capable of producing a Mw8 earthquake, which is a significant finding regarding seismic hazard and risk. 
    more » « less
  4. Abstract Rift initiation within cold, thick, strong lithosphere and the evolving linkage to form a contiguous plate boundary remains debated in part owing to the lack of time–space constraints on kinematics of basement‐involved faults. Different rift sectors initiate diachronously and may eventually link to produce a jigsaw spatial pattern, as in the East African rift, and along the Atlantic Ocean margins. The space–time distribution of earthquakes illuminates the geometry and kinematics of fault zones within the crystalline crust, as well as areas with pressurized magma bodies. We use seismicity and Global Navigation System Satellites (GNSS) data from the Turkana Rift Array Investigating Lithospheric Structure (TRAILS) project in East Africa and a new digital compilation of faults and eruptive centres to evaluate models for the kinematic linkage of two initially separate rift sectors: the Main Ethiopian Rift (MER) and the Eastern rift (ER). The ca. 300 km wide zone of linkage includes failed basins and linkage zones; seismicity outlines active structures. Models of GNSS data indicate that the ca. 250 km‐wide zone of seismically active en echelon basins north of the Turkana Depression is a zone, or block, of distributed strain with small counterclockwise rotation that serves to connect the Main Ethiopian and Eastern rifts. Its western boundary is poorly defined owing to data gaps in South Sudan. Strain across the northern and southern boundaries of this block, and an ca. 50 km‐wide kink in the southern Turkana rift is accommodated by en echelon normal faults linked by short strike‐slip faults in crystalline basement, and relay ramps at the surface. Short segments of obliquely oriented basement structures facilitate across‐rift linkage of faults, but basement shear zones and Mesozoic rift faults are not actively straining. This configuration has existed for at least 2–5 My without the development of localized shear zones or transform faults, documenting the importance of distributed deformation in continental rift tectonics. 
    more » « less
  5. Abstract The Indo‐Burma subduction zone is a highly oblique subduction system where the Indian plate is converging with the Eurasian plate. How strain is partitioned between the Indo‐Burma interface and upper plate Kabaw Fault, and whether the megathrust is a locked and active zone of convergence that can generate great earthquakes are ongoing debates. Here, we use data from a total of 68 Global Navigation Satellite System (GNSS) stations, including newly installed stations across the Kabaw Fault and compute an updated horizontal and vertical GNSS velocity field. We correct vertical rates for fluctuating seasonal signals by accounting for the elastic response of monsoon water on the crust. We model the geodetic data by inverting for 11,000 planar and non‐planar megathrust fault geometries and two geologically viable structural interpretations of the Kabaw Fault that we construct from field geological data, considering a basin‐scale wedge‐fault and a crustal‐scale reverse fault. We demonstrate that the Indo‐Burma megathrust is locked, converging at a rate ofmm/yr, and capable of hosting >8.2Mwmegathrust events. We also show that the Kabaw Fault is locked and accommodating strike‐slip motion at a rate ofmm/yr and converging at a rate ofmm/yr. Our interpretation of the geological, geophysical, and geodetic datasets indicates the Kabaw Fault is a crustal‐scale structure that actively absorbs a portion of the convergence previously ascribed to the Indo‐Burma megathrust. This reveals a previously unrecognized seismic hazard associated with the Kabaw Fault and slightly reduces the estimated hazard posed by megathrust earthquakes in the region. 
    more » « less