Abstract The circumgalactic medium (CGM) around massive galaxies plays a crucial role in regulating star formation and feedback. Using the Cosmology and Astrophysics with MachinE Learning Simulations (CAMELS) suite, we develop emulators for the X-ray surface brightness profile and the X-ray luminosity–stellar mass scaling relation, to investigate how stellar and active galactic nucleus (AGN) feedback shape the X-ray properties of the hot CGM. Our analysis shows that at CGM scales (1012≲Mhalo/M⊙≲ 1013, 10 ≲rkpc−1≲ 400), stellar feedback more significantly impacts the X-ray properties than AGN feedback within the parameters studied. Comparing the emulators to recent eROSITA All Sky Survey (eRASS) observations, it is found that stronger feedback than is currently implemented in the IllustrisTNG, SIMBA, and Astrid simulations is required to match the observed CGM properties. However, adopting these enhanced feedback parameters causes deviations in the stellar mass–halo mass relations from observational constraints below the group-mass scale. This tension suggests possible unaccounted-for systematics in X-ray CGM observations or inadequacies in the feedback models of cosmological simulations.
more »
« less
This content will become publicly available on October 23, 2026
Star Formation Rates, Metallicities, and Stellar Masses on Kiloparsec Scales in TNG50
Abstract Integral field units have extended our knowledge of galactic properties to kiloparsec (or, sometimes, even smaller) patches of galaxies. These scales are where the physics driving galaxy evolution (feedback, chemical enrichment, etc.) take place. Quantifying the spatially resolved properties of galaxies, both observationally and theoretically, is therefore critical to our understanding of galaxy evolution. To this end, we investigate spatially resolved scaling relations within galaxies ofM⋆ > 109.0atz= 0 in IllustrisTNG. We examine both the resolved star formation main sequence (rSFMS) and the resolved mass–metallicity relation (rMZR) using 1 kpc × 1 kpc maps. We find that the rSFMS in IllustrisTNG is well described by a power law but is significantly shallower than the observed rSFMS. However, the disagreement between the rSFMS of IllustrisTNG and observations is likely driven by an overestimation of AGN feedback in IllustrisTNG for the higher-mass hosts. Conversely, the rMZR for IllustrisTNG has very good agreement with observations. Furthermore, we argue that the rSFMS is an indirect result of the Schmidt–Kennicutt law and local gas relation, which are both independent of host galaxy properties. Finally, we expand upon a localized leaky-box model to study the evolution of idealized spaxels and find that it provides a good description of these resolved relations. The degree of agreement, however, between idealized spaxels and simulated spaxels depends on the “net” outflow rate for the spaxel, and the IllustrisTNG scaling relations indicate a preference for a low net outflow rate.
more »
« less
- Award ID(s):
- 2346977
- PAR ID:
- 10645070
- Publisher / Repository:
- The Astrophysical Journal
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 993
- Issue:
- 1
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 32
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Feedback from supermassive black holes is believed to be a critical driver of the observed color bimodality of galaxies above the Milky Way mass scale. Active galactic nuclei (AGN) feedback has been modeled in many galaxy formation simulations, but most implementations have involved simplified prescriptions or a coarse-grained interstellar medium (ISM). We present the first set of Feedback In Realistic Environments (FIRE)-3 cosmological zoom-in simulations with AGN feedback evolved toz∼ 0, examining the impact of AGN feedback on a set of galaxies with halos in the mass range 1012–1013M⊙. These simulations combine detailed stellar and ISM physics with multichannel AGN feedback including radiative feedback, mechanical outflows, and, in some simulations, cosmic rays (CRs). We find that massive (>L*) galaxies in these simulations can match local scaling relations including the stellar mass–halo mass relation and theMBH–σrelation; in the stronger model with CRs, they also match the size–mass relation and the Faber–Jackson relation. Many of the massive galaxies in the simulations with AGN feedback have quenched star formation and elliptical morphologies, in qualitative agreement with observations. In contrast, simulations at the massive end without AGN feedback produce galaxies that are too massive and form stars too rapidly, are order-of-magnitude too compact, and have velocity dispersions well above Faber–Jackson. Despite these successes, the AGN models analyzed do not produce uniformly realistic galaxies when the feedback parameters are held constant: While the stronger model produces the most realistic massive galaxies, it tends to overquench the lower-mass galaxies. This indicates that further refinements of the AGN modeling are needed.more » « less
-
Abstract The cluster environment has been shown to affect the molecular gas content of cluster members, yet a complete understanding of this often subtle effect has been hindered due to a lack of detections over the full parameter space of galaxy star formation rates (SFRs) and stellar masses. Here, we stack CO(2–1) spectra ofz ∼ 1.6 cluster galaxies to explore the average molecular gas fractions of galaxies both at lower mass (log(M*/M⊙) ∼ 9.6) and further below the star-forming main sequence (SFMS; ΔMS ∼ −0.9) than other literature studies; this translates to a 3σgas mass limit of ∼7 × 109M⊙for stacked galaxies below the SFMS. We divide our sample of 54z ∼ 1.6 cluster galaxies, derived from the Spitzer Adaptation of the Red-Sequence Cluster Survey, into nine groupings, for which we recover detections in 8. The average gas content of the full cluster galaxy population is similar to coeval field galaxies matched in stellar mass and SFR. However, when further split by CO-undetected and CO-detected, we find that galaxies below the SFMS have statistically different gas fractions from the field scaling relations, spanning deficiencies to enhancements from 2σbelow to 3σabove the expected field gas fractions, respectively. These differences betweenz= 1.6 cluster and field galaxies below the SFMS are likely due to environmental processes, though further investigation of spatially resolved properties and more robust field scaling relation calibration in this parameter space are required.more » « less
-
Abstract The radial gradient of gas-phase metallicity is a powerful probe of the chemical and structural evolution of star-forming galaxies, closely tied to disk formation and gas kinematics in the early Universe. We present spatially resolved chemical and dynamical properties for a sample of 25 galaxies at 0.5 ≲ z ≲ 1.7 from theMSA-3Dsurvey. These innovative observations provide 3D spectroscopy of galaxies at a spatial resolution approaching JWST’s diffraction limit and a high spectral resolution ofR ≃ 2700. The metallicity gradients measured in our galaxy sample range from −0.03 to 0.02 dex kpc−1. Most galaxies exhibit negative or flat radial gradients, indicating lower metallicity in the outskirts or uniform metallicity throughout the entire galaxy. We confirm a tight relationship between stellar mass and metallicity gradient atz ∼ 1 with small intrinsic scatter of 0.02 dex kpc−1. Our results indicate that metallicity gradients become increasingly negative as stellar mass increases, likely because the more massive galaxies tend to be more “disky.” This relationship is consistent with the predictions from cosmological hydrodynamic zoom-in simulations with strong stellar feedback. This work presents the effort to harness the multiplexing capability of the JWST NIRSpec microshutter assembly in slit-stepping mode to map the chemical and kinematic profiles of high-redshift galaxies in large samples and at high spatial and spectral resolution.more » « less
-
Abstract Recent cosmological hydrodynamical simulations have produced populations of numerical galaxies whose global star-forming properties are in good agreement with those of observed galaxies. Proper modeling of energetic feedback from supernovae and active galactic nuclei is critical to the ability of simulations to reproduce observed galaxy properties, and historically, such modeling has proven to be a challenge. Here, we analyze the local properties of central and satellite galaxies in thez= 0 snapshot of the TNG100 simulation as a test of feedback models. We generate a face-on projection of stellar particles in TNG100 galaxies, from which we demonstrate the existence of a resolved star-forming main sequence (ΣSFR–Σ*relation) with a slope and normalization that is in reasonable agreement with previous studies. We also present radial profiles of various galaxy populations for two parameters: the distance from the resolved main-sequence line (ΔΣSFR) and the luminosity-weighted stellar age (AgeL). We find that, on average, high-mass central and satellite galaxies quench from the inside out, while low-mass central and satellite galaxies have similar, flatter profiles. Overall, we find that, with the exception of the starburst population, the TNG100 feedback models yield simulated galaxies whose radial distributions of AgeLand ΔΣSFRagree with those of observed galaxies.more » « less
An official website of the United States government
