{Fully superconducting (SC)machines hold immense promise for high-power-density and higher efficiency machine solutions for offshore wind turbine applications. In this paper, a 10MW air-core fully SC machine is designed for offshore wind turbine applications. This machine design is considered with inside armature coils and outside rotating field coils. In this topology, shield iron can be eliminated or reduced by replacing it with shield coils which contain the magnetic flux inside the machine. This machine is attractive for off-shore wind turbine application due to its high-power density and high efficiency compared to a conventional shield iron design. However, due to the introduction of additional shield coils, this topology uses relatively more amount of SC material than a conventional shield iron design. Therefore, a tradeoff between the shield coils and the shield iron is explored in this paper. In addition, machine designs with different pole-counts are investigated to identify the optimal pole-count design for a low-speed application. A detailed ac loss calculation is evaluated for the machine and required cryocooler power is evaluated to obtain the machine efficiency.
more »
« less
This content will become publicly available on January 7, 2026
Low-Power ULF Transmitter Design Using Static Permanent Magnet
This paper presents a low-power Ultra Low Frequency (ULF) transmitter design that uses a static, permanent magnet to bring the surrounding magnetic shield near saturation. A low-power control coil modulates this static magnetic field by toggling sections of the shield between saturated and unsaturated states. The transmitter, operating at 400 Hz and tested using a 3D magnetometer, demonstrated an increase of 22.3 dB along the pole at 800 Hz and a 17.7 dB increase at 400 Hz perpendicular to the pole, with a further 33 dB enhancement than the control coil’s leakage at 800 Hz. These results highlight a novel method for efficient magnetic field modulation with significantly lower power requirements than traditional approaches. This novel approach reduces power consumption and opens new possibilities for designing scalable, energy-efficient ULF communication systems, with potential applications in underwater communication, remote sensing, and long-range wireless networks.
more »
« less
- Award ID(s):
- 2126443
- PAR ID:
- 10645081
- Publisher / Repository:
- IEEE
- Date Published:
- Page Range / eLocation ID:
- 274 to 275
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)This paper presents the design, fabrication and experimental characterization of a chip-sized wireless power receiver for low-frequency electrodynamic wireless power transmission (EWPT). Utilizing a laser micro-machined meandering suspension, one NdFeB magnet, and two PZT-SA piezoelectric patches, this 0.08 cm 3 micro-receiver operates at its torsion mode mechanical resonance of 724 Hz. The device generates 360 μW average power (4.2 mWcm -3 power density) at 1 cm distance from a transmitter coil operating at 724 Hz and safely within allowable human exposure limits of 2 mTrms field. Compared to a previously reported macro-scale prototype, this volume-efficient micro-receiver is 31x smaller and offers 3.2x higher power density within a low-profile, compact footprint for wirelessly charging wearable and bio-implantable devices.more » « less
-
It has been shown that a proxy determination of the magnetospheric open–closed magnetic field line boundary (OCB) location can be made by examining the ultra-low-frequency (ULF) wave power in magnetometer data, with particular interest in the Pc5 ULF waves with periods of 3–10 min. In this study, we present a climatology of such Pc5 ULF waves using ground-based magnetometer data from the South Pole Station (SPA), McMurdo (MCM) station, and the Automatic Geophysical Observatories (AGOs) located across the Antarctic continent, to infer OCB behavior and variability during geomagnetically quiet times (i.e., Ap < 30 nT). For each season [i.e., austral fall (20 February 2017–20 April 2017), austral winter (20 May 2017–20 July 2017), austral spring (20 August 2017–20 October 2017), and austral summer (20 November 2017–20 January 2018)], north–south (i.e., H-component) magnetic field line residual power–spectral density (PSD) measurements taken during geomagnetically quiet periods within a 60-day window centered at the austral solstice/equinox are averaged in 10-min temporal bins to form the climatology at each station. These residual PSDs thus enable the analysis of Pc5 activity (and lower period “long-band” oscillations) and, thus, OCB location/variability as a function of season and magnetic latitude. The dawn and dusk transitions across the OCB are analyzed, with a discussion of dawn and dusk variability during nominally quiet geomagnetic periods. In addition, latitudinal dependencies of the OCB and peak Pc5 periods at each station are discussed, along with the empirical Tsyganenko model comparisons to our site measurements.more » « less
-
A significant challenge in the design of fully superconducting (SC) machines is managing ac losses in the SC armature. Recent developments in MgB2 superconducting conductors promise low ac loss conductors suitable for fully SC machines. This paper presents an optimized design targeting low losses and low weight for a 10-MW fully SC generator suitable for offshore wind turbine applications. An outer rotor air-core machine topology is investigated to optimize the design with low weight and low losses. An active shielding concept is used to minimize the pole count without adding excessive weight. This enables a reduction in the electrical frequency for a practical design by a factor of 4 to 5 over current designs, driving ac losses and active components weight lower by an order of magnitude. In this study, armature current is varied to control electrical and magnetic loading in order to minimize losses. A pole count study is conducted to identify the design space suitable for MW scale machines. A comparison is made between active shield, passive shield and a hybrid topology to address the benefits of an active shield for weight reduction. Results suggest that low-pole-count designs with MgB2 conductors will enable machines with less than 1 kW of ac losses.more » « less
-
Abstract This work is on the design, fabrication and characterization of a hexagonal ferrite band-pass filter that can be tuned either with a magnetic field or an electric field. The filter operation is based on a straight-edge Y-type hexagonal ferrite resonator symmetrically coupled to the input and output microstrip transmission lines. The Zn2Yfilter demonstrated magnetic field tunability in the 8–12 GHz frequency range by applying an in-plane bias magnetic fieldH0provided by a built-in permanent magnet. The insertion loss and 3 dB bandwidth within this band were 8.6 ± 0.4 dB and 350 ± 40 MHz, respectively. The electric fieldEtunability of the pass-band of the device was facilitated by the nonlinear magnetoelectric effect (NLME) in the ferrite. TheE-tuning of the center frequency of the filter by (1150 ± 90) MHz was obtained for an input DC electric power of 200 mW. With efforts directed at a significant reduction in the insertion loss, the compact and power efficient magnetic and electric field tunable Zn2Y band-pass filter has the potential for use in novel reconfigurable RF/microwave devices and communication systems.more » « less
An official website of the United States government
