skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Intrinsic Riemannian Metrics on Spaces of Curves: Theory and Computation
This chapter reviews some past and recent developments in shape comparison and analysis of curves based on the computation of intrinsic Riemannian metrics on the space of curve modulo shape-preserving transformations. We summarize the general construction and theoretical properties of quotient elastic metrics for Euclidean as well as non-Euclidean curves before considering the special case of the square root velocity metric for which the expression of the resulting distance simplifies through a particular transformation. We then examine the different numerical approaches that have been proposed to estimate such distances in practice and in particular to quotient out curve reparametrization in the resulting minimization problems.  more » « less
Award ID(s):
1953267 2402555 2438562
PAR ID:
10645637
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Springer International Publishing
Date Published:
Page Range / eLocation ID:
1 to 35
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, we study a class of Riemannian metrics on the space of unparametrized curves and develop a method to compute geodesics with given boundary conditions. It extends previous works on this topic in several important ways. The model and resulting matching algorithm integrate within one common setting both the family of H 2 -metrics with constant coefficients and scale-invariant H 2 -metrics on both open and closed immersed curves. These families include as particular cases the class of first-order elastic metrics. An essential difference with prior approaches is the way that boundary constraints are dealt with. By leveraging varifold-based similarity metrics we propose a relaxed variational formulation for the matching problem that avoids the necessity of optimizing over the reparametrization group. Furthermore, we show that we can also quotient out finite-dimensional similarity groups such as translation, rotation and scaling groups. The different properties and advantages are illustrated through numerical examples in which we also provide a comparison with related diffeomorphic methods used in shape registration. 
    more » « less
  2. Abstract Proliferation of high‐resolution imaging data in recent years has led to substantial improvements in the two popular approaches for analyzing shapes of data objects based on landmarks and/or continuous curves. We provide an expository account of elastic shape analysis of parametric planar curves representing shapes of two‐dimensional (2D) objects by discussing its differences, and its commonalities, to the landmark‐based approach. Particular attention is accorded to the role of reparameterization of a curve, which in addition to rotation, scaling and translation, represents an important shape‐preserving transformation of a curve. The transition to the curve‐based approach moves the mathematical setting of shape analysis from finite‐dimensional non‐Euclidean spaces to infinite‐dimensional ones. We discuss some of the challenges associated with the infinite‐dimensionality of the shape space, and illustrate the use of geometry‐based methods in the computation of intrinsic statistical summaries and in the definition of statistical models on a 2D imaging dataset consisting of mouse vertebrae. We conclude with an overview of the current state‐of‐the‐art in the field. This article is categorized under: Image and Spatial Data < Data: Types and StructureComputational Mathematics < Applications of Computational Statistics 
    more » « less
  3. We introduce the shape module of the Python package Geomstats to analyze shapes of objects represented as landmarks, curves and surfaces across fields of natural sciences and engineering. The shape module first implements widely used shape spaces, such as the Kendall shape space, as well as elastic spaces of discrete curves and surfaces. The shape module further implements the abstract mathematical structures of group actions, fiber bundles, quotient spaces and associated Riemannian metrics which allow users to build their own shape spaces. The Riemannian geometry tools enable users to compare, average, interpolate between shapes inside a given shape space. These essential operations can then be leveraged to perform statistics and machine learning on shape data. We present the object-oriented implementation of the shape module along with illustrative examples and show how it can be used to perform statistics and machine learning on shape spaces. 
    more » « less
  4. How can one analyze detailed 3D biological objects, such as neuronal and botanical trees, that exhibit complex geometrical and topological variation? In this paper, we develop a novel mathematical framework for representing, comparing, and computing geodesic deformations between the shapes of such tree-like 3D objects. A hierarchical organization of subtrees characterizes these objects - each subtree has a main branch with some side branches attached - and one needs to match these structures across objects for meaningful comparisons. We propose a novel representation that extends the Square-Root Velocity Function (SRVF), initially developed for Euclidean curves, to tree-shaped 3D objects. We then define a new metric that quantifies the bending, stretching, and branch sliding needed to deform one tree-shaped object into the other. Compared to the current metrics such as the Quotient Euclidean Distance (QED) and the Tree Edit Distance (TED), the proposed representation and metric capture the full elasticity of the branches (i.e., bending and stretching) as well as the topological variations (i.e., branch death/birth and sliding). It completely avoids the shrinkage that results from the edge collapse and node split operations of the QED and TED metrics. We demonstrate the utility of this framework in comparing, matching, and computing geodesics between biological objects such as neuronal and botanical trees. We also demonstrate its application to various shape analysis tasks such as (i) symmetry analysis and symmetrization of tree-shaped 3D objects, (ii) computing summary statistics (means and modes of variations) of populations of tree-shaped 3D objects, (iii) fitting parametric probability distributions to such populations, and (iv) finally synthesizing novel tree-shaped 3D objects through random sampling from estimated probability distributions. 
    more » « less
  5. Statistical analysis of shape evolution during cell migration is important for gaining insights into biological processes. This paper develops a time-series model for temporal evolution of cellular shapes during cell motility. It uses elastic shape analysis to represent and analyze shapes of cell boundaries (as planar closed curves), thus separating cell shape changes from cell kinematics. Specifically, it utilizes Transported Square-Root Velocity Field (TSRVF), to map non-Euclidean shape sequences into a Euclidean time series. It then uses PCA to reduce Euclidean dimensions and imposes a Vector Auto-Regression (VAR) model on the resulting low-dimensional time series. Finally, it presents some results from VAR-based statistical analysis: estimation of model parameters and diagnostics, synthesis of new shape sequences, and predictions of future shapes given past shapes. 
    more » « less