skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on October 1, 2026

Title: A long-term perspective to the effects of the 2023 marine heat wave on stony corals in the Caribbean
Marine heat waves (MHW) are a leading cause of death for stony corals, and it is reasonable to expect that a record-breaking MHW would negatively impact coral communities; 2023–2024 provided a test of this assertion in St John, US Virgin Islands, where an intense MHW brought temperatures of 30.6°C and degree-heating weeks of 23.23°C-weeks. On reefs where coral cover has been low for decades, the 2023/2024 MHW did not have discernable effects on coral cover. Nonetheless, there was a trend between 2023 and 2024 for mean coral cover to decline by small absolute (≤ 3%), but large relative (13–27%) amounts, with these changes affecting multiple genera and perturbing coral assemblages. These trends are eclipsed by the massive changes that have affected these coral communities since 1987; the 2023/2024 MHW was the latest in a series of disturbances transitioning these reefs to low coral cover. This MHW did not statistically depress coral cover, but it changed coral assemblages, intensifying the ecological perils of rarity, extirpation and perhaps local extinction.  more » « less
Award ID(s):
2333603 2019992
PAR ID:
10645733
Author(s) / Creator(s):
;
Publisher / Repository:
Royal Society of London
Date Published:
Journal Name:
Biology Letters
Volume:
21
Issue:
10
ISSN:
1744-957X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Over recent decades, many Caribbean reefs have transitioned to states where stony corals are no longer spatially dominant. The community dynamics culminating in this outcome are well known, but its functional implications remain incompletely understood. Here we used annual surveys from 1992 to 2019 to describe coral communities at 6 sites off St. John, US Virgin Islands, and explored how their ecological dynamics interact with their capacity to sustain estimated coral community calcification (G, kg CaCO 3 m -2 yr -1 ). These communities had low coral cover (≤4.4%), but they changed through small and incremental events that summed to a slight decline in coral cover and changes in species assemblages favoring biotic homogenization and weedy species. Estimated coral G remained low, between 0.3 and 1.3 kg CaCO 3 m -2 yr -1 (8.2-35.6 mmol CaCO 3 m -2 d -1 ), but it differed among sites and years. The dominant contributors to G were Siderastrea siderea (1 site), Porites astreoides (1 site), and Orbicella spp. (4 sites), but higher G only occurred where Orbicella spp. remained relatively common; G dramatically declined at 1 site when the abundance of this genus decreased. These results suggest that some coral-depleted reefs may maintain low G that could be sufficient to avoid transitions into net negative budget states, provided that biological and physical erosion and dissolution of CaCO 3 (not recorded here) are minimal. Further mortalities of the few coral species remaining on these reefs through disturbances like stony coral tissue loss disease would compromise this delicate production-erosion balance, and likely see transitions of such reefs into negative carbonate budget states. 
    more » « less
  2. Storto, Andrea (Ed.)
    The world’s oceans are warming at an unprecedented rate, causing dramatic changes to coastal marine systems, especially coral reefs. We used three complementary ocean temperature databases (HadISST, Pathfinder, and OISST) to quantify change in thermal characteristics of Caribbean coral reefs over the last 150 years (1871–2020). These sea surface temperature (SST) databases included in situ and satellite-derived measurements at multiple spatial resolutions. We also compiled a Caribbean coral reef database identifying 5,326 unique reefs across the region. We found that Caribbean reefs have been warming for at least a century. Regionally reef warming began in 1915, and for four of the eight Caribbean ecoregions we assessed, significant warming was detected for the latter half of the nineteenth century. Following the global mid-twentieth century stasis, warming resumed on Caribbean reefs in the early 1980s in some ecoregions and in the 1990s for others. On average, Caribbean reefs warmed by 0.18°C per decade during this period, ranging from 0.17°C per decade on Bahamian reefs (since 1988) to 0.26°C per decade on reefs within the Southern and Eastern Caribbean ecoregions (since 1981 and 1984, respectively). If this linear rate of warming continues, these already threatened ecosystems would warm by an additional ~1.5°C on average by 2100. We also found that marine heatwave (MHW) events are increasing in both frequency and duration across the Caribbean. Caribbean coral reefs now experience on average 5 MHW events annually, compared to 1 per year in the early 1980s, with recent events lasting on average 14 days. These changes in the thermal environment, in addition to other stressors including fishing and pollution, have caused a dramatic shift in the composition and functioning of Caribbean coral reef ecosystems. 
    more » « less
  3. Abstract Major tropical storms are destructive phenomena with large effects on the community dynamics of multiple biomes. On coral reefs, their impacts have been described for decades, leading to the expectation that future storms should have effects similar to those recorded in the past. This expectation relies on the assumption that storm intensities will remain unchanged, and the impacted coral reef communities are similar to those of the recent past; neither assumption is correct. This study quantified the effects of two category five hurricanes on the reefs of St. John,U.S.Virgin Islands, where 31 yr of time‐series analyses reveal chronic coral mortality, increasing macroalgal abundance, and five major hurricanes that caused acute coral mortality. Contextualized by these trends, the effects of the most recent storms, Hurricanes Irma and Maria (September 2017), on coral cover were modest. While mean absolute coral cover declined 1–4% depending on site, these effects were not statistically discernable. Following decades of increasing abundance of macroalgae, this functional group responded to the recent hurricanes with large increases in abundance on both absolute and relative scales. Decades of chronic mortality have changed the coral assemblages of St. John to create degraded communities that are resistant to severe storms. 
    more » « less
  4. Banaszak, A (Ed.)
    Monitoring coral cover can describe the ecology of reef degradation, but rarely can it reveal the proximal mechanisms of change, or achieve its full potential in informing conservation actions. Describing temporal variation in Symbiodiniaceae within corals can help address these limitations, but this is rarely a research priority. Here, we augmented an ecological time series of the coral reefs of St. John, US Virgin Islands, by describing the genetic complement of symbiotic algae in common corals. Seventy-five corals from nine species were marked and sampled in 2017. Of these colonies, 41% were sampled in 2018, and 72% in 2019; 28% could not be found and were assumed to have died. Symbiodiniaceae ITS2 sequencing identified 525 distinct sequences (comprising 42 ITS2 type profiles), and symbiont diversity differed among host species and individuals, but was in most cases preserved within hosts over 3 yrs that were marked by physical disturbances from major hurricanes (2017) and the regional onset of stony coral tissue loss disease (2019). While changes in symbiont communities were slight and stochastic over time within colonies, variation in the dominant symbionts among colonies was observed for all host species. Together, these results indicate that declining host abundances could lead to the loss of rare algal lineages that are found in a low proportion of few coral colonies left on many reefs, especially if coral declines are symbiont-specific. These findings highlight the importance of identifying Symbiodiniaceae as part of a time series of coral communities to support holistic conservation planning. Repeated sampling of tagged corals is unlikely to be viable for this purpose, because many Caribbean corals are dying before they can be sampled multiple times. Instead, random sampling of large numbers of corals may be more effective in capturing the diversity and temporal dynamics of Symbiodiniaceae metacommunities in reef corals. 
    more » « less
  5. Coral reefs are important habitats that represent global marine biodiversity hotspots and provide important benefits to people in many tropical regions. However, coral reefs are becoming increasingly threatened by climate change, overfishing, habitat destruction, and pollution. Historical baselines of coral cover are important to understand how much coral cover has been lost, e.g., to avoid the ‘shifting baseline syndrome’. There are few quantitative observations of coral reef cover prior to the industrial revolution, and therefore baselines of coral reef cover are difficult to estimate. Here, we use expert and ocean-user opinion surveys to estimate baselines of global coral reef cover. The overall mean estimated baseline coral cover was 59% (±19% standard deviation), compared to an average of 58% (±18% standard deviation) estimated by professional scientists. We did not find evidence of the shifting baseline syndrome, whereby respondents who first observed coral reefs more recently report lower estimates of baseline coral cover. These estimates of historical coral reef baseline cover are important for scientists, policy makers, and managers to understand the extent to which coral reefs have become depleted and to set appropriate recovery targets. 
    more » « less