skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on February 1, 2026

Title: Hydrothermal Liquefied Bio-Oil from Municipal Sewage Sludge as a Reactive Filler in Polymeric Diphenylmethane Diisocyanate (p-MDI) Wood Adhesives
The growing environmental concerns associated with petrochemical-based adhesives have driven interest in sustainable alternatives. This study investigates the use of bio-oil, derived from municipal sewage sludge (MSS) through hydrothermal liquefaction (HTL), as a reactive filler in polymeric methylene diphenyl diisocyanate (pMDI) wood adhesives. The bio-oil, rich in hydroxyl and carbonyl functional groups, was characterized using FTIR (Fourier transform infrared spectroscopy), elemental analysis, and NMR (nuclear magnetic resonance). These functional groups interact with the isocyanate groups of pMDI, enabling crosslinking and enhancing adhesive performance. Various MSS bio-oil and pMDI formulations were evaluated for tensile shear strength on Southern yellow pine veneers under dry and wet conditions. The formulation with a 1:4 bio-oil to pMDI weight ratio exhibited the best performance, achieving tensile shear strengths of 1.96 MPa (dry) and 1.66 MPa (wet). Higher bio-oil content led to decreased adhesive strength, attributed to reduced crosslinking and increased moisture sensitivity. This study demonstrates the potential of MSS-derived bio-oil as a sustainable additive in pMDI adhesives, offering environmental benefits without significantly compromising adhesive performance and marking a step toward greener wood adhesive solutions.  more » « less
Award ID(s):
1735971
PAR ID:
10645988
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Sustainability
Volume:
17
Issue:
3
ISSN:
2071-1050
Page Range / eLocation ID:
1318
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Sustainability of the adhesives prepared from fossil-based materials has become a growing concern. Thus, replacement of petroleum-based materials by ones derived from renewable resources is pursued as a sustainable strategy for reducing their carbon footprint. Biobased latexes can be widely used as waterborne adhesives if their performance and properties are competitive to those currently available in the market. This work aims to evaluate the performance of latex adhesives with higher biobased content recently developed in our group. For this purpose, plant oil-based vinyl monomers HOSBM and CMM (derived from high oleic soybean oil and camelina oil, respectively) in combination with methyl methacrylate (MMA) and butyl acrylate (BA) were copolymerized using miniemulsion to yield latexes to be tested as adhesives. The MMA (“rigid” fragment) content was kept at 55 wt%, while BA (within remaining 45 wt% of the “soft” fragments) has been gradually replaced by either CMM or HOSBM. The effect of partial substitution of the BA by CMM or HOSBM on adhesive properties was assessed using peel testing (ASTM D 1876-08) on the multiple substrates. Presence of plant oil-based fragments in latex copolymers improves adhesives peel strength on most substrates. Plant oil-based latexes with the maximum content of CMM or HOSBM (up to 45wt %) and their optimal adhesive performance were determined on various carpet and paperboard substrates. Additionally, Life Cycle Assessment (LCA) method was used as a tool to evaluate the environmental performance of the synthesized latex adhesives as well as identify the hotspots in the synthesis of these plant-derived adhesives in their early design stages. LCA of plant oil-based monomers can explain to which extent the sustainability of the biobased latex adhesives can be improved. The authors thank the NSF Industry and University Cooperative Research Center for Bioplastic and Biocomposites for financial support. Thanks to NSF CB2 (1916564) 
    more » « less
  2. null (Ed.)
    The increasing demand for bioderived plastics and rubbers and the large supply of glycerol makes it an excellent starting chemical for the production of biopolymers. Little success in commercially viable glycerol polymers has yet to be realized. In particular, high molecular weight thermoplastics have been especially elusive due to the multifunctional nature of glycerol. This work details the production of glycerol–acrylic biopolymers. By esterifying glycerol with acrylic acid, and subsequent RAFT polymerization to suppress the gelation, we were able to achieve glycerol thermoplastics with high molecular weights (1 MDa). After studying the thermal/mechanical properties of the polymer, it was found that these glycerol polymers had a high degree of tack. When added to wood as an adhesive, it was found that performance was comparable or exceeded standard wood adhesives such as Poly (Methylene diphenyl diisocyanate) (PMDI) and formaldehyde based adhesives. This yields wood adhesives that have less toxicity, lower environmental impact, and higher renewability. 
    more » « less
  3. Externally bonded wet-layup carbon fiber-reinforced polymer (CFRP) strengthening systems are extensively used in concrete structures but have not found widespread use in deficient steel structures. To address the challenges of the adhesive bonding of wet-layup CFRP to steel substrates, this study investigated the effect of core–shell rubber (CSR) nanoparticles on the curing kinetics, glass transition temperature (Tg) and mechanical properties of ambient-cured epoxy/CSR blends. The effects of silane coupling agent and CSR on the adhesive bond properties of CFRP/steel joints were also investigated. The results indicate that CSR nanoparticles have a mild catalytic effect on the curing kinetics of epoxy under ambient conditions. The effect of CSR on the Tg of epoxy was negligible. Epoxy adhesives modified with 5 to 20%wt. of CSR nanoparticles were characterized with improved ductility over brittle neat epoxy; however, the addition of CSR nanoparticles reduced tensile strength and modulus of the adhesives. An up to 250% increase in the single-lap shear strength of CFRP/steel joints was accomplished in CSR-modified joints over neat epoxy adhesive joints. 
    more » « less
  4. Hydrogels showing strong adhesion to different substrates have garnered significant attention for engineering applications. However, the current development of such hydrogel-based adhesive is predominantly limited to synthetic polymers, owing to their exceptional performance and an extensive array of chemical options. To advance the development of sustainable hydrogel-based adhesives, we successfully create a highly robust all-cellulose hydrogel-based adhesive, which is composed of concentrated dialcohol cellulose nanorods (DCNRs) and relies on enhanced hydrogen bonding interactions between cellulose and the substrate. We implement a sequential oxidization-reduction process to achieve this high-performance all-cellulose hydrogel, which is realized by converting the two secondary hydroxyl groups within an anhydroglucose unit into two primary hydroxyl groups, while simultaneously linearizing the cellulose chains. Such structural and chemical modifications on cellulose chains increase out-of-plane interactions between the DCNRs hydrogel and substrate, as simulations indicate. Additionally, these modifications enhance the flexibility of the cellulose chains, which would otherwise be rigid. The resulting all-cellulose hydrogels demonstrate injectability and strong adhesion capability to a wide range of substrates, including wood, metal, glass, and plastic. This green and sustainable all-cellulose hydrogel-based adhesive holds great promise for future bio-based adhesive design. 
    more » « less
  5. Injectable surgical sealants and adhesives, such as biologically derived fibrin gels and synthetic hydrogels, are widely used in medical products. While such products adequately adhere to blood proteins and tissue amines, they have poor adhesion with polymer biomaterials used in medical implants. To address these shortcomings, we developed a novel bio-adhesive mesh system utilizing the combined application of two patented technologies: a bifunctional poloxamine hydrogel adhesive and a surface modification technique that provides a poly-glycidyl methacrylate (PGMA) layer grafted with human serum albumin (HSA) to form a highly adhesive protein surface on polymer biomaterials. Our initial in vitro tests confirmed significantly improved adhesive strength for PGMA/HSA grafted polypropylene mesh fixed with the hydrogel adhesive compared to unmodified mesh. Toward the development of our bio-adhesive mesh system for abdominal hernia repair, we evaluated its surgical utility and in vivo performance in a rabbit model with retromuscular repair mimicking the totally extra-peritoneal surgical technique used in humans. We assessed mesh slippage/contraction using gross assessment and imaging, mesh fixation using tensile mechanical testing, and biocompatibility using histology. Compared to polypropylene mesh fixed with fibrin sealant, our bio-adhesive mesh system exhibited superior fixation without the gross bunching or distortion that was observed in the majority (80%) of the fibrin-fixed polypropylene mesh. This was evidenced by tissue integration within the bio-adhesive mesh pores after 42 days of implantation and adhesive strength sufficient to withstand the physiological forces expected in hernia repair applications. These results support the combined use of PGMA/HSA grafted polypropylene and bifunctional poloxamine hydrogel adhesive for medical implant applications. 
    more » « less