The Great Atlantic Sargassum Belt (GASB) first appeared in 2011 and quickly became the largest interconnected floating biome globally. Sargassum spp. requires both phosphorus (P) and nitrogen (N) for growth, yet the sources fueling the GASB are unclear. Here, we use coral–bound nitrogen isotopes from six coral cores to reconstruct N2 fixation, the primary source of bioavailable N to the surface ocean across the wider Caribbean over the past 120 years. Our data indicate that changes in N2 fixation were controlled by multidecadal and interannual changes in the supply of excess P from equatorial upwelling in the Atlantic. We show that the supply of P from equatorial upwelling and N from the N2 fixation response can explain the extent of the GASB since 2011. # Equatorial upwelling of phosphorus drives Atlantic N~2~ fixation and *Sargassum* blooms This Excel file contains time series data combining coral geochemical records (δ¹⁵N and δ¹⁸O), climate indices, Sargassum biomass, and major riverine outflows. The dataset integrates multiple spatially distributed records to examine long-term variability in nutrient dynamics, climate forcing, and ecological responses in the Caribbean and tropical Atlantic. Values that were not available or are missing are indicated as N/A. ## Column Reference Table File: Caribbean_data_for_DRYAD.xlsx | Column Name | Description | | :----------------------------------- | :------------------------------------------------------------------------------------------------- | | **Year\_CR\_Turneffe** | Calendar year of sampling for coral records from Turneffe Atoll (Belize) and Cahuita (Costa Rica). | | **Cahuita Costa Rica\_d18O\_ts** | Coral δ¹⁸O time series from Cahuita, Costa Rica (proxy for SST and freshwater input). | | **d15N\_CR** | Coral-bound δ¹⁵N from Cahuita, Costa Rica (proxy for nitrogen source/processing). | | **Turneffe Atoll\_d18O\_ts** | Coral δ¹⁸O time series from Turneffe Atoll, Belize. | | **d15N\_Turneffe** | Coral-bound δ¹⁵N from Turneffe Atoll. | | **Date\_MQ** | Sampling date for Martinique (MQ) site. | | **d18O\_MQ** | Coral δ¹⁸O from Martinique. | | **d15N\_MQ** | Coral δ¹⁵N from Martinique. | | **Year Bermuda** | Calendar year for Bermuda coral samples. | | **d15N Bermuda** | Coral δ¹⁵N from Bermuda. | | **Year\_CUBA** | Calendar year for Cuban coral records. | | **d15N\_CUBA** | Coral δ¹⁵N from Cuba. | | **d15N\_Mexico** | Coral δ¹⁵N from Mexico. | | **Year\_Tobago** | Calendar year for Tobago coral samples. | | **d15N\_Tobago** | Coral δ¹⁵N from Tobago. | | **Year AMM** | Year corresponding to Atlantic Meridional Mode (AMM) values. | | **AMM\_SST** | Sea Surface Temperature anomalies associated with the AMM. | | **AMM\_Wind** | Wind anomalies associated with the AMM. | | **AMO** | Atlantic Multidecadal Oscillation index value. | | **average\_year** | Averaged year across all coral records included. | | **AVERAGE\_rescaled** | Composite δ¹⁵N record rescaled across sites. | | **error\_propagated** | Propagated error estimate for the rescaled average. | | **AVERAGE\_rescaled\_noCR\_BM\_TB** | Rescaled δ¹⁵N average excluding Costa Rica, Bermuda, and Tobago. | | **error\_propagated2** | Propagated error for the reduced-site average. | | **Months Sargassum** | Month of Sargassum observation. | | **Monthly Sargassum biomass (tons)** | Monthly biomass estimates of pelagic Sargassum (tons). | | **Year\_SST\_SSS** | Year corresponding to SST/SSS data. | | **SST\_10-20N\_20-60W** | Sea Surface Temperature average over 10–20°N, 20–60°W. | | **SSS\_10-20N\_20-60W** | Sea Surface Salinity average over the same region. | | **U\_windstress\_10\_20N\_58\_62W** | Zonal wind stress (10–20°N, 58–62°W). | | **windspeed\_0\_20N\_20\_50W** | Mean wind speed (0–20°N, 20–50°W). | | **Geo\_u\_12\_18N\_60\_80W (CC)** | Geostrophic zonal velocity (12–18°N, 60–80°W), Caribbean Current proxy. | | **DU\_scav\_areaweight** | Dust deposition (scavenging flux, area-weighted). | | **DU\_ddep\_areaweight** | Dust dry deposition (area-weighted). | | **BC\_scav\_areaweight** | Black carbon scavenging flux (area-weighted). | | **Bc\_ddep\_areaweight** | Black carbon dry deposition (area-weighted). | | **BC\_total\_areaweight** | Total black carbon deposition (area-weighted). | | **DU\_total\_areaweight** | Total dust deposition (area-weighted). | | **Obidos\_Amazon\_m3\_s** | Amazon River discharge at Óbidos station (m³/s). | | **Ciudad Bolivar\_Orinoco\_m3\_s** | Orinoco River discharge at Ciudad Bolívar (m³/s). | | **Year Pstar** | Year corresponding to P\* (phosphorus excess) record. | | **Pstar** | Phosphorus excess (indicator of nutrient balance, micro Molar). | | **Amazon\_outflow\_date** | Date of Amazon outflow measurement. | | **Amazon\_outflow\_km3** | Amazon River outflow volume (km³). | | **Orinoco\_outflow\_date** | Date of Orinoco outflow measurement. | | **Orinoco\_outflow\_km3** | Orinoco River outflow volume (km³). | Links to other publicly accessible locations of the data: * [https://climexp.knmi.nl](http://...) Data was derived from the following sources: * Climate Explorer was used for gridded satellite-derived products (SST, SSS, windspeed, windstress) by using the geographical extent as indicated in the manuscript ## Code/Software No software was used for data analysis, and the codes used for figures and data analyses are available on GitHub ([https://github.com/marinejon/](https://github.com/marinejon/))
more »
« less
This content will become publicly available on November 5, 2026
Equatorial upwelling of phosphorus drives Atlantic N2 fixation and Sargassum blooms
Abstract The Great AtlanticSargassumBelt first appeared in 2011 and quickly became the largest interconnected floating biome on Earth. In recent years,Sargassumstranding events have caused substantial ecological and socio-economic impacts in coastal communities.Sargassumrequires both phosphorus (P) and nitrogen (N) for growth, yet the primary sources of these nutrients fuelling the extensiveSargassumblooms remain unclear. Here we use coral-bound N isotopes to reconstruct N2fixation, the ultimate source of the ocean’s bioavailable N, across the Caribbean over the past 120 years. Our data indicate that changes in N2fixation were primarily controlled by multidecadal and interannual changes in equatorial Atlantic upwelling of ‘excess P’, that is, P in stoichiometric excess relative to fixed N. We show that the supply of excess P from equatorial upwelling and N from the N2fixation response can account for the majority ofSargassumvariability since 2011.Sargassumdynamics are best explained by their symbiosis with N2-fixing epiphytes, which render the macroalgae highly competitive during strong equatorial upwelling of excess P. Thus, the future ofSargassumin the tropical Atlantic will depend on how global warming affects equatorial Atlantic upwelling and the climatic modes that control it.
more »
« less
- Award ID(s):
- 1903586
- PAR ID:
- 10646217
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- Nature Geoscience
- Date Published:
- Journal Name:
- Nature Geoscience
- ISSN:
- 1752-0894
- Format(s):
- Medium: X
- Associated Dataset(s):
- View Associated Dataset(s) >>
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Biological nitrogen fixation is a key process balancing the loss of combined nitrogen in the marine nitrogen cycle. Its relevance in upwelling or high nutrient regions is still unclear, with the few available studies in these regions of the ocean reporting rates that vary widely from below detection limit to > 100 nmol N L−1 d−1. In the eastern tropical Atlantic Ocean, two open ocean upwelling systems are active in boreal summer. One is the seasonal equatorial upwelling, where the residual phosphorus associated with aged upwelled waters is suggested to enhance nitrogen fixation in this season. The other is the Guinea Dome, a thermal upwelling dome. We conducted two surveys along 23° W across the Guinea Dome and the Equator from 15° N to 5° S in September 2015 and August–September 2016 with high latitudinal resolution (20–60 nm between stations). The abundance ofTrichodesmiumcolonies was characterized by an Underwater Vision Profiler 5 and the total biological nitrogen fixation in the euphotic layer was measured using the15N2technique. The highest abundances ofTrichodesmiumcolonies were found in the area of the Guinea Dome (9°–15° N) with a maximum of 3 colonies L−1near the surface. By contrast, colonies were almost absent in the Equatorial band between 2° N and 5° S. The highest nitrogen fixation rate was measured at the northern edge of the Guinea Dome in 2016 (ca. 31 nmol N L−1 d−1). In this region, where diazotrophs thrived on a sufficient supply of both phosphorus and iron, a patchy distribution was unveiled by our increased spatial resolution scheme. In the Equatorial band, rates were considerably lower, ranging from below detection limit to ca. 4 nmol N L−1 d−1, with a clear difference in magnitude between 2015 (rates close to zero) and 2016 (average rates around 2 nmol N L−1 d−1). This difference seemed triggered by a contrasting supply of phosphorus between years. Our study stresses the importance of surveys with sampling at fine-scale spatial resolution, and shows unexpected high variability in the rates of nitrogen fixation in the Guinea Dome, a region where diazotrophy is a significant process supplying new nitrogen into the euphotic layer.more » « less
-
Pelagic Sargassum is abundant in the Sargasso Sea, but a recurrent great Atlantic Sargassum belt (GASB) has been observed in satellite imagery since 2011, often extending from West Africa to the Gulf of Mexico. In June 2018, the 8850-kilometer GASB contained >20 million metric tons of Sargassum biomass. The spatial distribution of the GASB is mostly driven by ocean circulation. The bloom of 2011 might be a result of Amazon River discharge in previous years, but recent increases and interannual variability after 2011 appear to be driven by upwelling off West Africa during boreal winter and by Amazon River discharge during spring and summer, indicating a possible regime shift and raising the possibility that recurrent blooms in the tropical Atlantic and Caribbean Sea may become the new norm.more » « less
-
Abstract The oceanographic ecology of pelagicSargassum, and the means by which these floating macroalgae thrive in the nutrient-poor waters of the open ocean, have been studied for decades. Beginning in 2011, the Great AtlanticSargassumBelt (GASB) emerged, withSargassumproliferating in the tropical Atlantic and Caribbean where it had not previously been abundant. Here we show that the nutritional status ofSargassumin the GASB is distinct, with higher nitrogen and phosphorus content than populations residing in its Sargasso Sea habitat. Moreover, we find that variations in arsenic content ofSargassumreflect phosphorus limitation, following a hyperbolic relationship predicted from Michaelis-Menten nutrient uptake kinetics. Although the sources of nutrients fueling the GASB are not yet clear, our results suggest that nitrogen and phosphorus content ofSargassum, together with its isotopic composition, can be used to identify those sources, whether they be atmospheric, oceanic, or riverine in origin.more » « less
-
Abstract Peat mosses (Sphagnumspp.) are keystone species in boreal peatlands, where they dominate net primary productivity and facilitate the accumulation of carbon in thick peat deposits.Sphagnummosses harbor a diverse assemblage of microbial partners, including N2‐fixing (diazotrophic) and CH4‐oxidizing (methanotrophic) taxa that support ecosystem function by regulating transformations of carbon and nitrogen. Here, we investigate the response of theSphagnumphytobiome (plant + constituent microbiome + environment) to a gradient of experimental warming (+0°C to +9°C) and elevated CO2(+500 ppm) in an ombrotrophic peatland in northern Minnesota (USA). By tracking changes in carbon (CH4, CO2) and nitrogen (NH4‐N) cycling from the belowground environment up toSphagnumand its associated microbiome, we identified a series of cascading impacts to theSphagnumphytobiome triggered by warming and elevated CO2. Under ambient CO2, warming increased plant‐available NH4‐N in surface peat, excess N accumulated inSphagnumtissue, and N2fixation activity decreased. Elevated CO2offset the effects of warming, disrupting the accumulation of N in peat andSphagnumtissue. Methane concentrations in porewater increased with warming irrespective of CO2treatment, resulting in a ~10× rise in methanotrophic activity withinSphagnumfrom the +9°C enclosures. Warming's divergent impacts on diazotrophy and methanotrophy caused these processes to become decoupled at warmer temperatures, as evidenced by declining rates of methane‐induced N2fixation and significant losses of keystone microbial taxa. In addition to changes in theSphagnummicrobiome, we observed ~94% mortality ofSphagnumbetween the +0°C and +9°C treatments, possibly due to the interactive effects of warming on N‐availability and competition from vascular plant species. Collectively, these results highlight the vulnerability of theSphagnumphytobiome to rising temperatures and atmospheric CO2concentrations, with significant implications for carbon and nitrogen cycling in boreal peatlands.more » « less
An official website of the United States government
